【KDD2024】大规模层次化工业需求时间序列预测中的稀疏性整合

4fa92b1e40da4ee1e8452dd16fece220.png

来源:专知
本文为论文介绍,建议阅读5分钟
我们通过提出HAILS(层次化自适应稀疏时间序列模型)解决了这两个挑战。

1d79197c28635b93dac2fd471008e22f.png

层次化时间序列预测(HTSF)在许多现实世界的商业应用中是一个重要问题,其目标是同时预测通过层次关系相互关联的多个时间序列。然而,近期的研究未能解决大型企业需求预测应用中通常出现的两个重要挑战。首先,层次结构较低级别的许多时间序列具有高度稀疏性,即存在大量零值。大多数HTSF方法没有处理这种层次结构中的稀疏性变化。此外,它们在处理真实世界中通常在文献中未见的大规模层次结构时,扩展性表现不佳。我们通过提出HAILS(层次化自适应稀疏时间序列模型)解决了这两个挑战,这是一种新的概率层次模型,通过自适应地用不同的分布假设建模稀疏和密集的时间序列,并将它们整合以符合层次约束,从而实现准确和校准的概率预测。我们通过真实世界的需求预测数据集评估了我们方法的可扩展性和有效性。在一家大型化工制造公司中,我们部署了HAILS用于产品需求预测,涉及超过一万个产品,并观察到预测准确性显著提高了8.5%,对稀疏时间序列的改进则达到了23%。增强的准确性和可扩展性使HAILS成为改进商业规划和客户体验的宝贵工具。

23bba472338ea566f2070c5442fd60b2.png

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

26353a8584f0f278b8b248890641339d.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

关于 KDD 2024 的具体细节目前尚未完全公开,但可以基于以往的 KDD 大会模式推测其可能的内容。以下是有关 KDD 会议的一般信息以及潜在的关键点: ### 关于 KDD 会议概述 KDD(Knowledge Discovery in Databases)是数据挖掘领域最具影响力的国际顶级会议之一[^2]。该会议通常每年举办一次,吸引了来自全球的数据科学家、研究人员和行业专家参与。 ### 征稿范围 KDD 的征稿范围广泛涵盖了数据科学的核心议题,包括但不限于机器学习算法开发、大数据分析技术、推荐系统设计、图数据分析方法等[^3]。对于 KDD 2024 来说,预计将继续关注这些前沿方向,并可能会特别强调人工智能伦理、隐私保护机制及其实际应用案例研究等方面的新进展。 ### 时间安排与地理位置选择标准 历届 KDD 会议多在美国及其他国家轮流举行。考虑到时间跨度及地域平衡原则,在北美地区之外寻找合适的城市作为主办场地是一种常见做法。因此,KDD 2024 可能会选择亚洲或者欧洲某个具有较强科研实力和技术氛围的大城市来承办此次活动[^4]。 ### 主题设定依据趋势预测 随着近年来AI技术快速发展,未来几年内的热点话题很可能围绕以下几个方面展开讨论: - **可解释性模型构建**: 如何让复杂的黑箱模型变得透明易懂. - **跨学科融合创新**: 探索不同领域间相互借鉴促进彼此成长的可能性. - **可持续发展目标支持**: 利用先进技术解决环境问题和社会公平挑战. ```python # 示例代码展示如何提交论文摘要至学术平台 import requests url = 'https://example.com/api/submit_paper' data = { "title": "Exploring New Frontiers of Data Science", "abstract": "This paper investigates...", "keywords": ["Data Mining", "Machine Learning"] } response = requests.post(url, json=data) if response.status_code == 200: print("Paper submitted successfully!") else: print(f"Submission failed with status code {response.status_code}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值