编程之美 2.18数组分割 将一个长度为2N的数组分割成2个长度为N的数组,且两数组的和的差的绝对值最小,即和最接近 动态规划?????????????????????????????????????

博客探讨了如何使用动态规划算法将一个长度为2N的数组分割成两个长度为N的子数组,使得两数组的和最接近。通过状态转移方程分析,给出源代码实现,特别提到了处理负数和优化空间复杂度的可能性。
摘要由CSDN通过智能技术生成

对于四个数3,1, 11,2,设a[]={0,3,1, 11,2};N=2,SUM=17,SUM/2+1=9;

用dp(i,j,c)来表示从前i个元素中取j个、且这j个元素之和不超过c的最佳方案,在这里i>=j,c<=SUM/2+1.

    状态转移方程: 

                   取第i个物品       不取  

           dp(i,j,c)=max{dp(i-1,j-1,c-a[i])+a[i],dp(i-1,j,c)}

当i=1,dp[1][1][9]=max(a[1]+dp[0][0][6],dp[0][1][9])

因为a[3]=11>9,所以复制,与i=2的值一样

当i=4,dp[4][2][9]=max(a[4]+dp[3][1][7],dp[3][2][9])

问题:没有考虑负数的情况,好像可以把所有的数都加上同一个正数,使所有的数都为正,这样两个数组的个数都是N,可以抵消.但如果分割的个数不同呢?
而且可以不用三维数组,用滑动数组代替,即只用二个二维数组即可,或只用一个二维数组?

而且dp[][][]中的顺序好像要是倒序的???

源代码如下: 

#include "stdafx.h"

#include <iostream>

using namespace std;<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值