蓝牙BLE协议之——PHY层

注:本系列所有文章基于蓝牙6.0协议栈核心规范文档,由SIG规定 

目录

一、介绍

二、PHY物理信道与跳频

40个RF信道

跳频算法

三、PHY类型

a. FEC编码(使用一个卷积编码器)

b. Pattern Mapper(模式映射器)

四、调制方式


一、介绍

PHY(Physical Layer,物理层)是BLE协议栈的最底层,负责物理信号的调制、发射与接收,如下图所示

BLE PHY层主要完成以下任务:

  • 调制与解调:将比特流转换为无线电信号,或将无线电信号还原为比特流。

  • 频率控制:基于40个RF信道(2.4GHz ISM免费频段),实现跳频。

  • 发射功率控制:决定发射信号的强度。

  • 接收灵敏度支持:决定接收信号的最低强度。

  • 接入地址识别:用于同步与识别连接。

二、PHY物理信道与跳频

40个RF信道

每个信道2MHZ

广播信道(上图黄色部分):2402Mhz、2426Mhz、2480Mhz

数据信道(上图蓝色部分):除了广播信道之外的37个信道

跳频算法

跳频算法 CSA #1就是基于这37个数据信道,先检测不拥挤的信道,做标记整出一张信道MAP,然后再约定一个在MAP中自增的一个Hop值,典型的算法是F(n+1) = [F(n) + hop] % 37

自适应跳频 CSA #2则在基础跳频上加了检测这张MAP上的信道,检测到某个信道拥堵了就改一下那个信道,映射到空闲信道上去

名称全称版本特点
Basic Channel Selection Algorithm #1CSA #1Bluetooth 4.0~4.1简单、固定算法
Channel Selection Algorithm #2CSA #2Bluetooth 5.0起更复杂、更抗干扰、更安全

三、PHY类型

BLE PHY有三种主要类型:

PHY类型数据速率调制方式应用场景
LE 1M PHY1 MbpsGFSK默认PHY,用于大多数通信场景
LE 2M PHY2 MbpsGFSK

更高速的通信(功耗更低,时延更短)

但是通讯距离变短

LE Coded PHY125 kbps / 500 kbpsGFSK + FEC(前向纠错)长距离通信,可靠性更高

实际上 LE Coded PHY也是基于1M phy只是引入了FEC机制

使用1:2 或 1:8 的编码率,分别称为:

  • S=2:每1个比特编码成2个比特(速率500 kbps)

  • S=8:每1个比特编码成8个比特(速率125 kbps)

编码使用以下两步处理:

a. FEC编码(使用一个卷积编码器)
  • 输入比特通过卷积编码器产生多个冗余比特

  • 增强抗干扰能力

b. Pattern Mapper(模式映射器)

将编码后比特映射成特定的比特模式以增强解码鲁棒性,例如:

  • 0 → 0000

  • 1 → 1111

四、调制方式

BLE使用的调制方式是GFSK(高斯频移键控)

  • 将“0”或“1”编码为不同频偏的射频信号

  • 高斯滤波器用于平滑频谱,减少带宽占用

  • 所有BLE PHY类型都基于GFSK,但参数不同(如频偏)

不同PHY主要在以下参数上有所不同:

参数含义LE 1MLE 2MLE Coded
频偏“0”和“1”之间的频率差±250 kHz±500 kHz±250 kHz
符号率每秒传输的比特数1 Msps2 Msps1 Msps
高斯滤波器BT值控制频谱宽度和平滑度0.50.50.5

用频偏表示‘0’和‘1’:

比特频偏(相对载波)实际意义
0-Δf(负频偏)信号向低频偏移
1+Δf(正频偏)信号向高频偏移

 不同PHY的频偏:

PHYΔf
LE 1M±250 kHz
LE 2M±500 kHz
LE Coded±250 kHz

总结1Mphy下的各种频偏以及漂移误差容忍

项目说明
标称调制频偏±250 kHz理想 GFSK 频移,表示‘0’‘1’
可接受偏移误差±80 kHz允许你不是刚好±250
最小要求≥ 185 kHzBLE 1M PHY最低标准
中心频率偏差±150 kHz可忽略调制时的影响(接收机通过同步和锁相环可以补偿掉)
漂移(包内)≤ 50 kHz 总幅度,≤ 400 Hz/μs 速率为了保证接收机的锁相环(PLL)能跟得上频率的变化,不然同步会丢失
内容概要:本文将金属腐蚀现象比作游戏角色受到持续伤害(debuff),并采用浓度迁移和损伤方程来建模这一过程。文中首先介绍了浓度迁移的概念,将其比喻为游戏中使角色持续掉血的毒雾效果,并展示了如何利用Numpy矩阵存储浓度场以及通过卷积操作实现浓度扩散。接着引入了损伤方程,用于评估材料随时间累积的损伤程度,同时考虑到材料自身的抗性特性。作者还提供了完整的Python代码示例,演示了如何在一个二维网格环境中模拟24小时内金属表面发生的腐蚀变化,最终得到类似珊瑚状分形结构的腐蚀形态。此外,文章提到可以通过调整模型参数如腐蚀速率、材料抗性等,使得模拟更加贴近实际情况。 适合人群:对材料科学、物理化学感兴趣的科研工作者和技术爱好者,尤其是那些希望通过编程手段深入理解金属腐蚀机制的人群。 使用场景及目标:适用于希望借助数值模拟方法研究金属腐蚀行为的研究人员;可用于教学目的,帮助学生更好地掌握相关理论知识;也可作为工程项目前期评估工具,预测不同条件下金属构件可能遭受的腐蚀损害。 阅读建议:由于文中涉及较多数学公式和编程细节,建议读者具备一定的Python编程基础以及对线性代数有一定了解。对于想要进一步探索该领域的学者来说,可以尝试修改现有代码中的参数设置或者扩展模型维度,从而获得更丰富的研究成果。
基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(高分项目)基于机器学习的银行客户产品认购预测项目Python源码及全套资料(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰&可乐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值