图论基础(一)

本文介绍了图论的基础概念,包括有向图和无向图的定义,强调了边的方向和邻接关系。在有向图中,边由一对有序顶点表示,而在无向图中,边是无方向的。还讨论了顶点的度(入度和出度),以及路径的概念,包括可达性和简单路径。
摘要由CSDN通过智能技术生成

图论基础(一)

有向图定义

​ 有向图G是一个二元组(V, E),记为G=(V, E)
其中V是有向图G的顶点集合,是一个有限集合,元素为顶点;E是有向图G的边集合,元素为也是一个二元组< u, v >,其中u,v是有向图G的顶点集合中的元素,< u, v >在这里是有方向的边,以u为起点,指向v的一条有向路径。u可以与v相同,代表自身指向自身的一个自环路径。

​ 假定存在有向图G=(V, E),顶点集合V={ 1, 2, 3, 4, 5, 6 },边集合E={ < 1, 2 >, <1, 3>, < 3, 4 >, < 4, 5 >, < 5, 6 > , < 6, 6 > } ,该有向图的结构则为以下形式:

有向图示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值