图论基础(一)
有向图定义
有向图G是一个二元组(V, E),记为G=(V, E)。
其中V是有向图G的顶点集合,是一个有限集合,元素为顶点;E是有向图G的边集合,元素为边,边也是一个二元组< u, v >,其中u,v是有向图G的顶点集合中的元素,< u, v >在这里是有方向的边,以u为起点,指向v的一条有向路径。u可以与v相同,代表自身指向自身的一个自环路径。
假定存在有向图G=(V, E),顶点集合V={ 1, 2, 3, 4, 5, 6 },边集合E={ < 1, 2 >, <1, 3>, < 3, 4 >, < 4, 5 >, < 5, 6 > , < 6, 6 > } ,该有向图的结构则为以下形式: