多源数据融合学习

    最近在看多源数据融合相关的论文,记录一下论文中的阅读笔记和自己的一些见解

多源信息融合(Multi-source information fusion)
最早由美国学者提出,这是一个新兴的交叉领域,近些年获得广泛的发展。应用于多个领域:目标识别、遥感、医学等。多源信息融合是对多种数据进行认知、综合、判断的过程,参与融合的数据往往具有:多源性、异构性、不完备性等,按照融合的层次不同,信息融合可以分为:数据级融合、模型级融合(特征级融合)、决策级融合。
数据级融合是最低层次的融合,直接对原始的数据进行处理,优点是保留了原始信息,信息损失很少,缺点是融合的局限性较大,只能够对单个或者相同类型的数据信息进行处理,计算量较大。
模型级融合是处于三种融合中间层次的融合,较为智能化,优点是对原始的数据进行了提取和处理进行融合,在数据量上降低了,带来的是计算量的减少,缺点是信息损失会带来数据精度的下降。
决策级融合在三者中是最高层次的融合,是最高层面的智能化融合,是建立在模型融合的基础上对于最终的处理结果进行综合的决策。有点事可以对不同类型的数据进行融合,计算量小,容错和抗干扰性较强,但是缺点也是显而易见的,数据信息损失较大会带来精度的下降。
三者对比如下:
             数据级融合   模型级融合  决策级融合
信息处理量     最大          较小        最小
信息损失量     最小          较小        最大
抗干扰能力     最小          较小        最小
容错能力       最差          较差        较好
融合算法难度    难            中          易
融合前处理     最小           中         最大
融合性能       最好           中          差
传感器依赖程度  大            中          小
信息融合中的关键技术主要包括:数据转换、数据关联、融合算法。
常用融合方法的比较
融合方法    运行环境  信息类型  信息表示       不确定性    融合技术       适用范围
加权平均     动态       冗余   原始值读取                  加权平均        低层融合
卡尔曼滤波   动态       冗余   概率分布        高斯噪声   系统模型滤波     低层融合
贝叶斯估计   静态       冗余   概率分布        高斯噪声    贝叶斯估计      低层融合
统计决策     静态       冗余   概率分布        高斯噪声    极值决策        高层融合
证据理论     静态       冗余   互补命题        逻辑推理                    高层融合
模糊理论     静态       冗余   互补命题        隶属度       逻辑推理       高层融合
神经元网络   动静       冗余   互补神经元输入  学习误差     神经网络       低 或 高
产生式规则   动静       冗余   互补命题        置信因子    逻辑推理        高层融合



























### 源数据融合的深度学习模型架构与实现 #### 架构设计原则 源数据融合涉及来自不同渠道的数据集成,这些数据可能具有不同的特征维度、频率和噪声水平。有效的深度学习框架应能够处理这种样性并从中提取有价值的信息。对于时间序列预测任务而言,尤其当面对个视角的时间序列时,模型不仅需考虑各单一序列内部模式,还需捕捉跨序列间的潜在关联[^3]。 #### 数据预处理策略 在构建具体模型之前,合理的数据准备至关重要。这包括但不限于缺失值填补、异常检测与修正、标准化转换等操作。针对异质性的输入信号,可采用特定编码机制将其映射到统一表示空间内;例如通过Embedding层将分类变量转化为稠密向量形式参与后续计算过程。 #### 融合方法概述 目前主流的方法大致可分为早期融合(Early Fusion)、晚期融合(Late Fusion)及混合型(Mixed Type): - **Early Fusion**: 将所有原始观测直接拼接在一起作为整体送入网络训练,在此过程中可能会损失部分个体特性; - **Late Fusion**: 各自独立建模后再做综合评判,保留了各自特点但增加了复杂度; - **Mixed Type**: 结合两者优点折衷方案,既保持了一定程度上的分离又实现了必要的交互交流[^1]. #### 实现案例分析 考虑到边缘设备上部署的需求场景下,nn-Meter项目提供了一个很好的实例来展示如何评估神经网络推理延迟性能,并据此优化设计方案以适应资源受限环境的要求[^2]. 下面给出一段简化版Python伪代码用于说明基于LSTM(Long Short-Term Memory)结构下的视界时间序列预测流程: ```python import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense, Embedding, InputLayer def build_model(input_shape): model = Sequential() # 假设我们有一个嵌入层用来处理离散属性 model.add(InputLayer(input_shape=input_shape)) model.add(Embedding(input_dim=1000, output_dim=64)) # 添加LSTM层来进行序列建模 model.add(LSTM(units=50, return_sequences=True)) model.add(LSTM(units=50)) # 输出层定义 model.add(Dense(1)) model.compile(optimizer='adam', loss='mse') return model ```
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值