
机器学习
文章平均质量分 83
Toky丶
在读博士生,主要研究方向为医疗机器人的视觉引导,其他例如三维计算机视觉,SLAM,深度学习啥都略懂。
展开
-
机器学习作业(一)
实验1(不同方差的高斯分布)1.1 实验要求从两个高斯分布中采样。一组采样为正类,一组采样为负类,两个高斯分布具有不同的方差。编程实现线性回归,y为一1或1。保存参数,画出回归投影面,同时可视化显示结果。编程实现线性判别分析,保留参数,对测试数据做出预测,同时可视化显示结果,画出分类面。1.2 实验效果图1 线性回归实现,其中蓝色平面为回归投影面图2 线性回归分类图3 LDA线性判别分析分类平面图4 LDA分类曲线,测试集分类精度:0.95...原创 2021-04-14 13:42:37 · 1250 阅读 · 2 评论 -
学习率a的计算标准
当学习率a非固定时,因为梯度下降是找的最小值,那么,在和给定的前提下,即寻找的最小值,即进一步,如果h(α)可导,局部最小值处的α满足:对于该二次近似函数:两种方法:1、线性搜索(Line Search)(最简单) 二分线性搜索(Bisection Line Search) 不断将区间[α1, α2]分成两半,选择端点异号的一侧,知道区间足够小或者找到...原创 2018-08-19 16:47:55 · 2449 阅读 · 0 评论 -
K-近邻算法-1
定义:采用测量不同特征值之间的距离方法进行分类优点:精度高,对异常值不敏感,无数据输入的限定缺点:计算复杂度与空间复杂度都相对较高试用数据范围:数值型和标称型 何为标称:标称型目标变量的结果只在有限目标集合中取值,如真与假。*(离散)工作原理:存在一个样本数据集合(训练样本集),并且样本集这种每个数据都存...原创 2018-08-20 19:34:23 · 364 阅读 · 0 评论 -
k均值 K—means Python 实现
K均值算法简介:摘自:《机器学习》周志华代码如下:k_means.pyfrom numpy import *import randomdef initK(): k = input("请输入聚类簇数:") return kdef init_C(k): """初始化C集合中到底分几个簇""" C = {"type1"...原创 2018-08-27 18:06:16 · 1073 阅读 · 0 评论 -
关于机器学习的Weka软件详细教程(转载)
转载自https://www.cnblogs.com/hxsyl/p/3307343.html下载与安装:链接:https://pan.baidu.com/s/14GMxr1mss_bm0bUoLNJnIw 密码:fvby (64位)Weka提供的功能有数据处理,特征选择、分类、回归、聚类、关联规则、可视化等。本文将对Weka的使用做一个简单的介绍,并通过简单的示例,使大家了解使用weka...转载 2018-08-29 11:29:11 · 50804 阅读 · 10 评论