17、用于多动症检测的机器学习和深度学习算法综述

用于多动症检测的机器学习和深度学习算法综述

1. 研究背景与筛选

多动症(ADHD)的诊断目前主要还是临床诊断,尽管诊断标准随着研究有所改进,但工具和评估方法大体未变。在本次研究中,通过系统筛选文章,最终确定37篇期刊文章纳入综述。

2. 相关工作
2.1 机器学习方法
  • 基于多种特征的分类
    • Riaz等人使用非图像(年龄、性别、智商等)和图像特征创建特征向量,用支持向量机(SVM)对多动症患者和对照者进行分类,在ADHD - 200数据集的KKI子数据集上取得了86.7%的准确率、77.2%的灵敏度和90.1%的特异度。
    • Shao等人针对ADHD - 200数据集的不平衡问题,提出基于SVM的成本敏感三目标分类模型,在Peking - 2子数据集上获得了86.04%的最佳准确率。
    • Ahmed Salman等人在预处理阶段使用三种平均时间序列分割提取大脑感兴趣区域,分类阶段使用具有隐藏层的分层极限学习机(ELM),识别对照者的准确率为99.72%,识别多动症患者的准确率为98.06%。
  • 瞳孔测量法
    • Silva等人使用基于规则的系统,通过Tobii眼动仪获取14名18 - 65岁参与者的眼睛注视和扫视运动数据,提取特征后输入不同分类器,随机森林(RF)分类器取得了85.31%的最大准确率。
    • Khanna等人提出基于网络的应用程序,集成集成投票模型记录瞳孔生物特征数据,使用卷
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值