用于多动症检测的机器学习和深度学习算法综述
1. 研究背景与筛选
多动症(ADHD)的诊断目前主要还是临床诊断,尽管诊断标准随着研究有所改进,但工具和评估方法大体未变。在本次研究中,通过系统筛选文章,最终确定37篇期刊文章纳入综述。
2. 相关工作
2.1 机器学习方法
- 基于多种特征的分类
- Riaz等人使用非图像(年龄、性别、智商等)和图像特征创建特征向量,用支持向量机(SVM)对多动症患者和对照者进行分类,在ADHD - 200数据集的KKI子数据集上取得了86.7%的准确率、77.2%的灵敏度和90.1%的特异度。
- Shao等人针对ADHD - 200数据集的不平衡问题,提出基于SVM的成本敏感三目标分类模型,在Peking - 2子数据集上获得了86.04%的最佳准确率。
- Ahmed Salman等人在预处理阶段使用三种平均时间序列分割提取大脑感兴趣区域,分类阶段使用具有隐藏层的分层极限学习机(ELM),识别对照者的准确率为99.72%,识别多动症患者的准确率为98.06%。
- 瞳孔测量法
- Silva等人使用基于规则的系统,通过Tobii眼动仪获取14名18 - 65岁参与者的眼睛注视和扫视运动数据,提取特征后输入不同分类器,随机森林(RF)分类器取得了85.31%的最大准确率。
- Khanna等人提出基于网络的应用程序,集成集成投票模型记录瞳孔生物特征数据,使用卷
超级会员免费看
订阅专栏 解锁全文
1505

被折叠的 条评论
为什么被折叠?



