核磁机器学习 | 机器学习和深度学习算法在fMRI中的应用

摘要

功能磁共振成像(fMRI)是目前应用最广泛的脑图像动态分析技术之一,通常结合多种算法来分析复杂的动态数据。近年来,机器学习和深度学习算法在分析fMRI数据方面的应用呈指数级增长。然而,由于文献中存在大量算法,选择合适的机器学习或深度学习算法来分析fMRI数据对每个研究者来说都是一项巨大的挑战。每个研究人员都需要花费大量的时间来了解目前用于fMRI数据分析的各种方法和算法。本文系统地回顾了使用机器学习和深度学习算法分析fMRI数据的当前研究进展。主要目标是:(a)分析机器学习和深度学习在fMRI中的研究趋势;(b)总结机器学习算法和深度学习在fMRI中的应用;(c)帮助基于fMRI的新研究者将其新发现与现有的fMRI研究领域相融合。本文从fMRI的类型、精神疾病、机器学习和深度学习算法的使用等方面对fMRI研究进行了分类,为fMRI研究提供了性能最佳的机器学习和深度学习算法,并且能够为未来从事fMRI研究的研究人员提供相应的指导。

理论背景

功能磁共振成像(fMRI)

功能磁共振成像(fMRI)是一种通过检测低频血氧水平依赖(BOLD)信号来测量大脑活动的技术。fMRI通过映射大脑中与能量使用相关的神经元活动来观察血液流动的变化。fMRI方法的一个主要优点是通过监测大脑中神经元活动相关区域的血流增加,来反映和研究大脑的活动状态。BOLD技术是执行大脑功能映射最常用的方法。BOLD信号是一种复合信号,反映了区域性大脑血流变化及其氧合和血液体积的变化。这些信号的强度间接地衡量了神经元的活动。fMRI实验的基本原理是:血流增加和能量消耗增大与神经元活动的增加密切相关。统计图用于表征大脑功能,通常反映了不同脑区的活动情况。这些图中信号的激活程度可以通过颜色编码的强度来表示,颜色深浅反映了特定脑区的活动强度。fMRI技术不仅用于检测由特定任务引起的BOLD反应,还包括静息态fMRI测量,用于研究大脑在没有外部刺激时的活动模式和区域间的功能连接。fMRI与近红外光谱(NIRS)和脑电图(EEG)等其他技术结合使用,也能有效地监测大脑神经活动。fMRI技术极大地推动了认知神经科学的发展,其主要用途在于帮助我们了解和研究大脑中与认知状态(例如记忆、再认等)相关的神经机制。目前,借助实时fMRI技术,我们可以进一步观察和分析大脑的激活状态。此外,fMRI技术不仅在传统的认知神经科学领域有着广泛的应用,而且还在神经营销和成瘾行为等研究领域中发挥着重要作用。

机器学习(ML)

机器学习是人工智能的一个重要分支,通过让计算机程序从现实世界的知识中学习,而无需进行明确的编程,并能基于所获得的知识改进后续的任务表现。从逻辑上讲,机器学习由三个参数来定义:经验(E)、任务(T)和性能(P),具体定义如下:对于任何任务T,如果计算机程序在任务T中的表现(P)随着经验E的积累而提高,那么该程序就会通过经验E来学习。机器学习的核心思想是在通过数据训练并应用合适的算法后,机器能够从中学习并自动改进。目前有大量关于机器学习算法应用的文献。这些算法根据学习过程分为四种类型:监督学习、无监督学习、强化学习和半监督学习。

‌监督学习的核心在于利用一组已知类别的样本(即训练数据)来调整分类器的参数,使其达到所要求的性能。无监督学习算法使用的是没有标签的真实数据,它们通过分析数据本身的结构或模式来进行学习,而不依赖于传统的标注过的训练数据集。无监督算法以其能够发现数据中的隐藏模式而著称。半监督学习算法处理的数据集包含部分缺失信息或部分未标注数据,算法的任务是仅依赖这些不完全的训练数据来进行学习,并尽可能利用已有的数据来推测或补充缺失的部分。强化学习算法通过外部环境或某种思维实体提供的反馈来获得或学习知识。

深度学习(DL)

深度学习是一种机器学习技术,它采用类似人工神经网络的方式,通过多层次的网络结构和复杂的算法来进行学习。换句话说,深度学习算法的学习方式与我们大脑的工作方式相似。深度学习允许各种计算模型通过处理层来学习数据表征。深度学习算法遵循神经系统的工作方式,其中神经元相互连接,负责传递信息。深度学习中的模型遵循分层结构,简单的深度学习模型通常包含三层。在这种分层模型中,每一层都接受来自前一层的信息,然后将其输出作为下一层的输入。深度学习算法的性能曲线相较于机器学习模型要高一些,因为机器学习模型在达到饱和点后性能不再提升,如图1所示。

图1.深度学习与传统学习算法的性能比较。

深度学习的最大优点在于,在训练深度网络模型之前不需要使用特征工程。输入数据直接传递给深度网络,而且模型在准确度方面表现良好。这消除了机器学习模型中的特征选择阶段,该阶段需要手动选择最佳特征以获得最佳结果。

实现深度学习算法的最流行深度架构包括多层感知器(MLP)、卷

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值