python函数(学习笔记)

本文介绍了Python在深度学习中的一些常用库和函数,包括os.path.join()、librosa音频处理、TensorFlow的TFRecordWriter、进度条库Tqdm、 librosa效果处理、数据操作方法如list.extend()、深度学习参数epochs和batch_size等,以及神经网络结构如Sequential和ResNet50。同时讲解了不同梯度下降法和优化器Adam的作用。
摘要由CSDN通过智能技术生成

python函数

1.os.path.join():用于路径拼接文件路径,从倒数第一个以/开头的参数开始拼接,之前的参数全部丢弃
2.librosa.get_duration()获得音频的时长
3.f.readlines()读取文件的所有行(而readline则是读取一行)
4.tf.io.TFRecordWriter():将记录写入TFRecords文件的类。
4.1首先认识:TensorFlow提供了一种统一的格式来存储数据,这个格式就是TFRecords。为了高效的读取数据,可以将数据进行序列化存储,这样也便于网络流式读取数据,TFRecord就是一种保存记录的方法可以允许你讲任意的数据转换为TensorFlow所支持的格式,这种方法可以使TensorFlow的数据集更容易与网络应用架构相匹配。整个文件由文件长度信息,长度校验码,数据,数据校验码组成。
总的来说TFRecord就是为了统一训练的数据文件格式
5.Tqdm 是一个快速,可扩展的Python进度条,可以在 Python 长循环中添加一个进度提示信息,用户只需要封装任意的迭代器 tqdm(iterator)。
6. librosa.load函数就是用来读取音频的。当然,读取之后,转化为了numpy的格式储存,而不再是音频的格式了。
例如:wav, sr = librosa.load(path, sr=16000)
返回值第一个是音频的信号值,类型是ndarray,第二个是采样率
7.librosa.effects.split(y, top

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值