十分钟安装Tensorflow-gpu2.6.0+本机CUDA12 以及numpy+matplotlib各包版本协调问题

本文介绍了如何在新机器上快速安装Tensorflow-gpu2.6.0,包括使用conda创建Python虚拟环境,安装CUDA11.2和cuDNN8.1,以及处理依赖包的版本匹配问题。通过修改pip和conda源,可以加速下载过程,避免从NVIDIA官网下载。最后,提供了一个纯净的Tensorflow2.6.0环境的完整pip包列表。
摘要由CSDN通过智能技术生成

换了台机器,又装Tensorflow,记得我第一次装的时候装了好几天,而今天只用了十分钟就搞定了,因为这个方法只用在终端操作,不用去英伟达官网下载包,刷刷刷的贼快,只是后面去找版本的对应问题了又花了些时间

0.pip/conda换默认源

为了高效下载,建议先把默认源换了,很简单这里不再赘述。(我用梯子,所以没换源😋)

1.Anaconda+python虚拟环境

如果你需要用到tensorflow了那我相信你一定会用Anaconda,Anaconda的安装不再赘述。只是提个醒,如果你第一次用conda create -n创建环境那么路径一定在C盘,而换默认路径一定是可以设置的,这里也不再展开
创建TensorFlow环境:(tf是环境名字,尽量取短点吧,要不然以后手都输麻)

conda create -n tf python=3.9

2.安装CUDA以及cudnn

找到NVIDIA控制面板->帮助->系统信息->组件看一下CUDA版本,我的12.0是目前最新的,一般向下兼容
在这里插入图片描述
作为最高效的安装方法,接下来的每一个下载都只在终端里完成
首先在Tensorflow官网里看一眼
在这里插入图片描述
我们就安装最新的tensorflow-gpu2.6.0+python3.9+CUDA11.2+cuDNN8.1套餐
先用conda search找找当前源下的CUDA与cuDNN有没有我们要的版本,如果没有对应包或者版本的话可以试试换镜像源,换几个总会有的。

conda search cuda

我的CUDA11.2有:
在这里插入图片描述

conda search cudnn

cuDNN8.1也有:
在这里插入图片描述

别忘了进入刚刚创建的环境:

activate tf

直接开下!

conda install cudatoolkit=11.2.0
conda install cudnn=8.1.0.77

两个都done了这一步就ok了,省去了多少官网的麻烦事

3.Tensorflow-gpu2.6.0下载测试

下载tensorflow-gpu2.6:

pip install tensorflow-gpu==2.6.0

此外还有几个必须包得装:
请确保numpy版本是1.19.5,否则tensorflow2.6.0与别的1.19.x都很容易打架

pip install protobuf==3.20.0
pip install numpy==1.19.5

如果要使用matplotlib会发现tensorlfow2.6.0需要的numpy版本比较低会和matplotlib打架
而经过在https://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib的一番寻找,我找到了(一个一个试的)唯一一个符合python3.9环境兼容且与numpy1.19.5也兼容的matplotlib版本:matplotlib3.3.4
在这里插入图片描述

pip install matplotlib==3.3.4

下载结束后进python测试:

python

import tensorflow as tf

tf.test.is_gpu_available()

exit()

在这里插入图片描述
True了就成功了,恭喜
再去跑跑之前的项目
在这里插入图片描述
完全没问题了

4.附一个纯净的tensorflow2.6.0不打架所有pip list

pip list

(tf) D:\AAA\PYTHON\pythonproject>pip list 
Package                 Version
----------------------- ---------
absl-py                 0.15.0
asttokens               2.2.1
astunparse              1.6.3
backcall                0.2.0
cachetools              5.3.0
certifi                 2022.12.7
charset-normalizer      3.1.0
clang                   5.0
colorama                0.4.6
comm                    0.1.3
contourpy               1.0.7
cycler                  0.11.0
debugpy                 1.6.7
decorator               5.1.1
executing               1.2.0
flatbuffers             1.12
fonttools               4.39.3
gast                    0.4.0
google-auth             2.17.2
google-auth-oauthlib    1.0.0
google-pasta            0.2.0
grpcio                  1.53.0
h5py                    3.1.0
idna                    3.4
importlib-metadata      6.3.0
importlib-resources     5.12.0
ipykernel               6.22.0
ipython                 8.12.0
jedi                    0.18.2
jupyter_client          8.1.0
jupyter_core            5.3.0
keras                   2.6.0
Keras-Preprocessing     1.1.2
kiwisolver              1.4.4
Markdown                3.4.3
MarkupSafe              2.1.2
matplotlib              3.3.4
matplotlib-inline       0.1.6
nest-asyncio            1.5.6
numpy                   1.19.5
oauthlib                3.2.2
opt-einsum              3.3.0
packaging               23.0
parso                   0.8.3
pickleshare             0.7.5
Pillow                  9.5.0
pip                     23.0.1
platformdirs            3.2.0
prompt-toolkit          3.0.38
protobuf                3.20.0
psutil                  5.9.4
pure-eval               0.2.2
pyasn1                  0.4.8
pyasn1-modules          0.2.8
Pygments                2.14.0
pyparsing               3.0.9
python-dateutil         2.8.2
pywin32                 306
pyzmq                   25.0.2
requests                2.28.2
requests-oauthlib       1.3.1
rsa                     4.9
scipy                   1.10.1
setuptools              67.6.1
six                     1.15.0
stack-data              0.6.2
tensorboard             2.12.1
tensorboard-data-server 0.7.0
tensorboard-plugin-wit  1.8.1
tensorflow-estimator    2.12.0
tensorflow-gpu          2.6.0
termcolor               1.1.0
tornado                 6.2
traitlets               5.9.0
typing-extensions       3.7.4.3
urllib3                 1.26.15
wcwidth                 0.2.6
Werkzeug                2.2.3
wheel                   0.40.0
wrapt                   1.12.1
zipp                    3.15.0

哪里不一样直接照着抄就可行

评论 76
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

汤米尼克

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值