一起来学PyTorch——神经网络(卷积层)

卷积层是深度学习中用于特征提取的关键组件,它利用卷积核对输入数据进行运算。Conv2d函数在PyTorch中用于构建卷积层,参数包括输入和输出通道数、卷积核大小、步长、填充和空洞率等,这些参数影响着特征提取的过程和结果。
摘要由CSDN通过智能技术生成
  1. 卷积层

卷积是分析数学中的一种运算,本质时使用卷积核的参数来提取数据的特征,通过矩阵点乘运算与求和运算来得到结果。

从左到右分别为,卷积核、特征图和卷积结果。特征图的通道数为1,大小为4*4,特征图周围一圈的0称为填充,想了解到同学可以评论,这里不详细解释。卷积核先与左上角的3*3对应相乘后累加,作为一个结果,即卷积结果的左上角。然后卷积核在特征图上滑动,完成相同计算过程。

from torch import nn
# 使用过torch.nn中的Conv2d()搭建卷积层
conv = nn.Conv2d(in_channels=1, out_channels=1, 
                    kernel_size=3, stride=1, 
                    padding=1, dilation=1,
                    group=1, bias=True)

input = torch.ones(1, 1, 5, 5)
output = conv(input)

简单介绍一下Conv2d()中的参数:

.in_channels:输入特征图的通道数。如RGB图像,通道数为3。

.out_channels:输出特征图的通道数。

.kernel_size:卷积核的尺寸,常见的有1,3,5,7。

.stride:步长,即卷积核在特征图上滑动的步长,一般为1。

.padding:填充,常见的有零填充、边缘填充等。默认为零填充。

.dilation:空洞卷积,当大于1时可以增大感受野的同时保证特征图的尺寸,默认为1。

.groups:可以实现组卷积,即在卷积操作时不是逐点卷积,而是将输入通道分为多个组。

.bias:是否需要偏置,默认为True。卷积核每一次累加运算中,需额外加偏置值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值