卷积层
卷积是分析数学中的一种运算,本质时使用卷积核的参数来提取数据的特征,通过矩阵点乘运算与求和运算来得到结果。
从左到右分别为,卷积核、特征图和卷积结果。特征图的通道数为1,大小为4*4,特征图周围一圈的0称为填充,想了解到同学可以评论,这里不详细解释。卷积核先与左上角的3*3对应相乘后累加,作为一个结果,即卷积结果的左上角。然后卷积核在特征图上滑动,完成相同计算过程。
from torch import nn
# 使用过torch.nn中的Conv2d()搭建卷积层
conv = nn.Conv2d(in_channels=1, out_channels=1,
kernel_size=3, stride=1,
padding=1, dilation=1,
group=1, bias=True)
input = torch.ones(1, 1, 5, 5)
output = conv(input)
简单介绍一下Conv2d()中的参数:
.in_channels:输入特征图的通道数。如RGB图像,通道数为3。
.out_channels:输出特征图的通道数。
.kernel_size:卷积核的尺寸,常见的有1,3,5,7。
.stride:步长,即卷积核在特征图上滑动的步长,一般为1。
.padding:填充,常见的有零填充、边缘填充等。默认为零填充。
.dilation:空洞卷积,当大于1时可以增大感受野的同时保证特征图的尺寸,默认为1。
.groups:可以实现组卷积,即在卷积操作时不是逐点卷积,而是将输入通道分为多个组。
.bias:是否需要偏置,默认为True。卷积核每一次累加运算中,需额外加偏置值。