用简易方法证明 n 个数的算术平均数 > 几何平均数

3 篇文章 0 订阅
1 篇文章 0 订阅

写博时间:2023-04-12 16:30~20:10
更改一些问题:2023-09-30 15:25~15:28

文章码量:5222字。


以前常常证明和使用 a + b 2 ≥ a b \dfrac{a+b}{2}\ge\sqrt {ab} 2a+bab 公式,
那么 n n n 个数的算术平均数 > 几何平均数的命题怎么证明呢?

在网上浏览了许多问答之后发现,基本都是使用琴生不等式,柯西不等式进行证明的,那有没有一些难度更小的证明方法呢?在这里我发现了一种简单易懂的证法。


证明
A n ≥ G n A_n\ge G_n AnGn


∑ i = 1 n x i n ≥ ∏ i = 1 n x i n \dfrac{\sum_{i=1}^{n}x_i}{n}\ge \sqrt[n]{\prod_{i=1}^{n}x_i} ni=1nxini=1nxi

以下均满足 x ≥ 0 x\ge 0 x0

首先证明 n = 2 n=2 n=2 的情况,即
x 1 + x 2 2 ≥ x 1 x 2 \dfrac{x_1+x_2}{2}\ge \sqrt{x_1x_2} 2x1+x2x1x2
x 1 + x 2 ≥ 2 x 1 x 2 x_1+x_2\ge 2\sqrt{x_1x_2} x1+x22x1x2
x 1 + x 2 − 2 x 1 x 2 ≥ 0 x_1+x_2-2\sqrt{x_1x_2}\ge0 x1+x22x1x2 0

( x 1 − x 2 ) 2 ≥ 0 (\sqrt{x_1}-\sqrt{x_2})^2\ge0 (x1 x2 )20

显然成立。

那么我们能不能把它推广到高元呢?

三元比较难证,想想怎么通过二元式证明四元式。

x 1 + x 2 + x 3 + x 4 4 \dfrac{x_1+x_2+x_3+x_4}{4} 4x1+x2+x3+x4
= 1 2 × ( x 1 + x 2 2 + x 1 + x 2 2 ) =\dfrac{1}{2}\times(\dfrac{x_1+x_2}{2}+\dfrac{x_1+x_2}{2}) =21×(2x1+x2+2x1+x2)
≥ 1 2 × ( x 1 x 2 + x 3 x 4 ) \ge\dfrac{1}{2}\times(\sqrt{x_1x_2}+\sqrt{x_3x_4}) 21×(x1x2 +x3x4 )
≥ 1 2 × 2 x 1 x 2 × x 3 x 4 \ge\dfrac{1}{2}\times2\sqrt{\sqrt{x_1x_2}\times\sqrt{x_3x_4}} 21×2x1x2 ×x3x4
≥ x 1 x 2 x 3 x 4 \ge\sqrt{\sqrt{x_1x_2x_3x_4}} x1x2x3x4
≥ x 1 x 2 x 3 x 4 4 \ge\sqrt[4]{x_1x_2x_3x_4} 4x1x2x3x4

好,证出来了。

类似的我们可以证明当 n = 2 m , m ∈ N n=2^m,m\in \N n=2m,mN 时,式子均成立。如下:
假设 n = 2 m − 1 n=2^{m-1} n=2m1 时成立,则当 n = 2 m n=2^m n=2m 时,

x 1 + x 2 + x 3 + ⋯ + x 2 m 2 m \dfrac{x_1+x_2+x_3+\dots +x_{2^m}}{2^m} 2mx1+x2+x3++x2m
= 1 2 × ( x 1 + x 2 + ⋯ + x 2 m − 1 2 m − 1 + x 2 m − 1 + 1 + x 2 m − 1 + 2 + ⋯ + x 2 m 2 m − 1 ) =\dfrac{1}{2}\times(\dfrac{x_1+x_2+\dots +x_{2^{m-1}}}{2^{m-1}}+\dfrac{x_{2^{m-1}+1}+x_{2^{m-1}+2}+\dots +x_{2^{m}}}{2^{m-1}}) =21×(2m1x1+x2++x2m1+2m1x2m1+1+x2m1+2++x2m)
≥ 1 2 × ( x 1 x 2 … x 2 m − 1 2 m − 1 + x 2 m − 1 + 1 x 2 m − 1 + 2 … x 2 m 2 m − 1 ) \ge\dfrac{1}{2}\times(\sqrt[2^{m-1}]{x_1x_2\dots x_{2^{m-1}}}+\sqrt[2^{m-1}]{x_{2^{m-1}+1}x_{2^{m-1}+2}\dots x_{2^m}}) 21×(2m1x1x2x2m1 +2m1x2m1+1x2m1+2x2m )
≥ 1 2 × 2 x 1 x 2 … x 2 m − 1 2 m − 1 × x 2 m − 1 + 1 x 2 m − 1 + 2 … x 2 m 2 m − 1 \ge\dfrac{1}{2}\times2\sqrt{\sqrt[2^{m-1}]{x_1x_2\dots x_{2^{m-1}}}\times\sqrt[2^{m-1}]{x_{2^{m-1}+1}x_{2^{m-1}+2}\dots x_{2^m}}} 21×22m1x1x2x2m1 ×2m1x2m1+1x2m1+2x2m
≥ x 1 x 2 … x 2 m 2 m − 1 \ge\sqrt{\sqrt[2^{m-1}]{x_1x_2\dots x_{2^m}}} 2m1x1x2x2m
≥ x 1 x 2 … x 2 m 2 m \ge\sqrt[2^m]{x_1x_2\dots x_{2^m}} 2mx1x2x2m

很不错,但对于所有正整数来说,还有 n − log ⁡ 2 n n-\log_2n nlog2n 个数没有证明。

这时候我们再来想想三元式?

对于三元式
x 1 + x 2 + x 3 3 ≥ x 1 x 2 x 3 \dfrac{x_1+x_2+x_3}{3}\ge \sqrt{x_1x_2x_3} 3x1+x2+x3x1x2x3
来说,他和四元式最大的不同在于少了一个 x 4 x_4 x4,如果将 x 4 x_4 x4 扔掉了,那不就成立了?
再搬一下四元式的结论:

x 1 + x 2 + x 3 + x 4 4 ≥ x 1 x 2 x 3 x 4 \dfrac{x_1+x_2+x_3+x_4}{4}\ge \sqrt{x_1x_2x_3x_4} 4x1+x2+x3+x4x1x2x3x4

那就尝试一下,我们令

x 1 + x 2 + x 3 3 = x 1 + x 2 + x 3 + x 4 4 \dfrac{x_1+x_2+x_3}{3}=\dfrac{x_1+x_2+x_3+x_4}{4} 3x1+x2+x3=4x1+x2+x3+x4

那么如果能证下面的式子成立就好了。
x 1 + x 2 + x 3 + x 4 4 ≥ x 1 x 2 x 3 \dfrac{x_1+x_2+x_3+x_4}{4}\ge \sqrt{x_1x_2x_3} 4x1+x2+x3+x4x1x2x3

x 1 + x 2 + x 3 3 = x 1 + x 2 + x 3 + x 4 4 \dfrac{x_1+x_2+x_3}{3}=\dfrac{x_1+x_2+x_3+x_4}{4} 3x1+x2+x3=4x1+x2+x3+x4

4 x 1 + 4 x 2 + 4 x 3 = 3 x 1 + 3 x 2 + 3 x 3 + 3 x 4 4x_1+4x_2+4x_3=3x_1+3x_2+3x_3+3x_4 4x1+4x2+4x3=3x1+3x2+3x3+3x4
x 4 = x 1 + x 2 + x 3 3 x_4=\dfrac {x_1+x_2+x_3}{3} x4=3x1+x2+x3
把这么难看的一坨分式乘进去
由四元式的式子得到:
x 1 x 2 x 3 x 4 4 \sqrt[4]{x_1x_2x_3x_4} 4x1x2x3x4
= x 1 x 2 x 3 4 × x 1 + x 2 + x 3 3 4 =\sqrt[4]{x_1x_2x_3}\times\sqrt[4]{\dfrac {x_1+x_2+x_3}{3}} =4x1x2x3 ×43x1+x2+x3
≤ x 1 + x 2 + x 3 + x 4 4 \le \dfrac{x_1+x_2+x_3+x_4}{4} 4x1+x2+x3+x4
= x 1 + x 2 + x 3 + x 1 + x 2 + x 3 3 4 =\dfrac{x_1+x_2+x_3+\dfrac{x_1+x_2+x_3}{3}}{4} =4x1+x2+x3+3x1+x2+x3
= x 1 + x 2 + x 3 3 =\dfrac{x_1+x_2+x_3}{3} =3x1+x2+x3

看起来是一大坨玩意儿,实际上我们需要用到的不过就第二条式子和最后一条式子。
也就是

x 1 x 2 x 3 4 × x 1 + x 2 + x 3 3 4 ≤ x 1 + x 2 + x 3 3 \sqrt[4]{x_1x_2x_3}\times\sqrt[4]{\dfrac {x_1+x_2+x_3}{3}} \le\dfrac{x_1+x_2+x_3}{3} 4x1x2x3 ×43x1+x2+x3 3x1+x2+x3

根号多不好看啊,我们将式子左右两边都四次方。
就变成了

x 1 x 2 x 3 × x 1 + x 2 + x 3 3 ≤ ( x 1 + x 2 + x 3 3 ) 4 {x_1x_2x_3}\times \dfrac {x_1+x_2+x_3}{3}\le(\dfrac{x_1+x_2+x_3}{3})^4 x1x2x3×3x1+x2+x3(3x1+x2+x3)4

好像可以消掉一个 x 1 + x 2 + x 3 3 \dfrac{x_1+x_2+x_3}{3} 3x1+x2+x3

x 1 x 2 x 3 ≤ ( x 1 + x 2 + x 3 3 ) 3 x_1x_2x_3\le(\dfrac{x_1+x_2+x_3}{3})^3 x1x2x3(3x1+x2+x3)3
再开个三次方根:
x 1 x 2 x 3 3 ≤ x 1 + x 2 + x 3 3 \sqrt[3]{x_1x_2x_3}\le\dfrac{x_1+x_2+x_3}{3} 3x1x2x3 3x1+x2+x3
这不就是我们想要的 x 1 + x 2 + x 3 3 ≥ x 1 x 2 x 3 3 \dfrac{x_1+x_2+x_3}{3}\ge\sqrt[3]{x_1x_2x_3} 3x1+x2+x33x1x2x3 嘛?

于是,我们成功地通过四元式的结论推出了三元式的结论!

也就是说,当我们知道 n = t n=t n=t 的时候式子成立时,当 n = t − 1 n=t-1 n=t1 时式子同样成立(当然 t t t 不能不是正整数)。
有什么用呢?

刚才我们不是证明了当 n = 2 m , m ∈ N n=2^m,m\in \N n=2m,mN 时,式子均成立?

因为 m ∈ N m\in \N mN,说明 n = 2 m n=2^m n=2m 可以趋于无穷。

那我们又证出了

当我们知道 n = t n=t n=t 的时候式子成立时,当 n = t − 1 n=t-1 n=t1 时式子同样成立

不就能覆盖正整数集了?!


类似的,我们写一下推广结论:

假设 n = k n=k n=k 时有 A n ≥ G n A_n\ge G_n AnGn,即:
x 1 + x 2 + ⋯ + x k k ≥ x 1 x 2 … x k k \dfrac{x_1+x_2+\dots+x_k}{k}\ge \sqrt[k]{x_1x_2\dots x_k} kx1+x2++xkkx1x2xk


x k = A k − 1 = x 1 + x 2 + ⋯ + x k − 1 k − 1 x_k=A_{k-1}=\dfrac{x_1+x_2+\dots +x_{k-1}}{k-1} xk=Ak1=k1x1+x2++xk1
则有:
x 1 + x 2 + ⋯ + x k − 1 + x 1 + x 2 + ⋯ + x k − 1 k − 1 k ≥ x 1 x 2 … x k − 1 A k − 1 k \dfrac{x_1+x_2+\dots +x_{k-1}+\dfrac{x_1+x_2+\dots +x_{k-1}}{k-1}}{k}\ge\sqrt[k]{x_1x_2\dots x_{{k-1}}A_{k-1}} kx1+x2++xk1+k1x1+x2++xk1kx1x2xk1Ak1


x 1 + x 2 + ⋯ + x k − 1 k − 1 ≥ x 1 x 2 … x k − 1 A k − 1 k \dfrac{x_1+x_2+\dots +x_{k-1}}{k-1}\ge\sqrt[k]{x_1x_2\dots x_{{k-1}}A_{k-1}} k1x1+x2++xk1kx1x2xk1Ak1

也就是
A k − 1 ≥ x 1 x 2 … x k − 1 A k − 1 k A_{k-1}\ge\sqrt[k]{x_1x_2\dots x_{{k-1}}A_{k-1}} Ak1kx1x2xk1Ak1

所以有
A k − 1 k ≥ x 1 x 2 … x k − 1 A k − 1 A_{k-1}^{k}\ge x_1x_2\dots x_{{k-1}}A_{k-1} Ak1kx1x2xk1Ak1

A k − 1 k − 1 ≥ x 1 x 2 … x k − 1 A_{k-1}^{k-1}\ge x_1x_2\dots x_{{k-1}} Ak1k1x1x2xk1

注意这里不是组合数!!

k − 1 k-1 k1 次方根,得

A k − 1 ≥ x 1 x 2 … x k − 1 k − 1 A_{k-1}\ge \sqrt[k-1]{x_1x_2\dots x_{k-1}} Ak1k1x1x2xk1

亦即

A k − 1 ≥ G k − 1 A_{k-1}\ge G_{k-1} Ak1Gk1

于是当 n = k − 1 n=k-1 n=k1 时,命题仍然成立。

综上所述,对一切正整数 n n n,均满足 A n ≥ G n A_n\ge G_n AnGn.

证毕。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值