局部变动原理:算术平均数不小于几何平均数

本文介绍了局部变动原理,并通过该原理证明了在n个数的和固定的情况下,算术平均数总是不小于几何平均数。通过举例两个数和n个数的情况,详细阐述了当数值相等时乘积达到最大,从而得出算术平均数大于等于几何平均数的结论。
摘要由CSDN通过智能技术生成

    前几天写的等高线模式中,在倒数第二个例子里我们证明了所有的圆内接n边形以正n边形最大。当时我们用到了一个很值得思考的方法:固定其余所有点的位置,只移动其中一个点的位置,那么这个点与左右相邻两点等距时面积才可能达到最大。这就说明圆内接n边形以正n边形最大,否则我可以不断寻找长度不等的邻边,通过一次次地调整不断地趋近我的最终目标。对于一个多变元函数,只有每个变量(在它所对应的单变量函数中)都达到最大时,所有变量才可能同时使函数值达到最大。这种思考方法被称之为“局部变动原理”。《数学与猜想》中提到了局部变动原理的另一个应用──证明n个数的算术平均数大于等于几何平均数。中学教材(至少在我的中学教材里)没有给出这一结论的证明。我自己曾经找到过这一定理的很多种证明,但《数学与猜想》中给出的是我所见到的最简洁、最有趣的证明。
    考虑两个数a和b,现在我已经知道它们的和是S,那么它们的乘积最大是多少?或许大家都知道,当两个数的和一定时,两数相等时乘积最大。也就是说,问题的答案就是((a+b)/2)^2。证明这个结论很简单,我们可以通过简单的代数运算看出,对于任意的a和b,((a+b)/2)^2不会小于ab。用前面的减去后面的,我们有
   ((a+b)/2)^2 - ab
= (a^2+2ab+b^2)/4 - ab
= (a^2-2ab+b^2)/4
= ((a-b)/2)^2
    可以看到,前者减去后者的差始终非负,并且仅当a=b时差值为0。<

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值