目录
一、DPCM编解码原理
DPCM是差分预测编码调制的缩写,是比较典型的预测编码系统。在DPCM系统中,需要注意的是预测器的输入是已经解码以后的样本。之所以不用原始样本来做预测,是因为在解码端无法得到原始样本,只能得到存在误差的样本。因此,在DPCM编码器中实际内嵌了一个解码器,如编码器中虚线框中所示。
在一个DPCM系统中,有两个因素需要设计:预测器和量化器。理想情况下,预测器和量化器应 进行联合优化。实际中,采用一种次优的设计方法: 分别进行线性预测器和量化器的优化设计。
二、DPCM编码系统设计
在本次实验中,我们采用固定预测器和均匀量化器。
- 预测器采用左侧、上方预测均可。
- 量化器采用8比特均匀量化。
本实验的目标是验证验证DPCM的编码效率。
- 首先读取一个256级的灰度图像,采用自己设定的预测方法计算预测误差,并对预测误差进行8比特均匀量化。
- 在DPCM编码器实现的过程中可同时输出预测误差图像和重建图像。
- 将预测误差图像写入文件并将该文件输入Huffman编码器,得到输出码流,给出概率分布图并计算压缩比。
- 将原始图像文件输入Huffman编码器,得到输出码流,给出概率分布图并计算压缩比。
- 最后比较两种系统(1.DPCM+熵编码和2.仅进行熵编码)之间的编码效率(压缩比和图像质量)。压缩质量以PSNR进行计算。
三、算法实现
1.代码
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <math.h>
int main(int argc, char** argv)
{
unsigned __int32 width = 256;
unsigned __int32 height = 256;
// 读取文件
char *yuvname = NULL;
char *newyuvname = NULL;
FILE* yuvFile = NULL;
FILE* newyuvFile = NULL;
char *pname = NULL;
FILE* pFile = NULL;
yuvname = argv[1];
newyuvname = argv[2];
pname= argv[3];
yuvFile = fopen(yuvname, "rb");
if (!yuvFile)
printf("原YUV文件打开失败\n");
else
printf("成功打开YUV文件\n");
newyuvFile = fopen(newyuvname, "wb");
if (!newyuvFile)
printf("重建YUV文件打开失败\n");
else
printf("重建YUV文件打开成功\n");
pFile = fopen(pname, "wb");
if (!pFile)
printf("误差文件打开失败\n");
else
printf("误差文件打开成功\n");
unsigned char* yuvBuf = NULL;
unsigned char* uBuf = NULL;
unsigned char* vBuf = NULL;
unsigned char * pBuf = NULL;
float* dBuf = NULL;
unsigned char* rBuf = NULL;
yuvBuf = (unsigned char*)malloc(width*height);
uBuf = (unsigned char*)malloc(width*height / 4);
vBuf = (unsigned char*)malloc(width*height / 4);
pBuf = (unsigned char*)malloc(width*height);//预测误差的量化值
rBuf = (unsigned char*)malloc(width*height);//重现图像
dBuf = (float*)malloc(width*height*4);//输入预测误差
unsigned char* doBuf = (unsigned char*)malloc(width*height * 4);
if (yuvBuf == NULL || uBuf == NULL || vBuf == NULL || pBuf == NULL)
{
printf("ERROR");
}
fread(yuvBuf, 1, width * height * 1, yuvFile);
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
if (j == 0) {
pBuf[i*width + j] = 0;
rBuf[i*width + j] = yuvBuf[i*width + j];
dBuf[i*width + j] = 0;
}
else {
dBuf[(i*width + j)] = float(yuvBuf[i*width + j]) - float(rBuf[i*width + j - 1]);
if (dBuf[ (i*width + j)] >= 0) {
pBuf[i*width + j] = floor(dBuf[(i*width + j)] + 0.5);
rBuf[i*width + j] = rBuf[i*width + j - 1] + pBuf[i*width + j] * 1;
}
else {
pBuf[i*width + j] = floor(fabs(float(dBuf[i*width + j]) + 0.5));
rBuf[i*width + j] = rBuf[i*width + j - 1] - pBuf[i*width + j] * 1;
}
}
}
}
// 写入重建YUV文件和预测误差文件
for (int i = 0; i < width*height / 4; i++) {
uBuf[i] = 128;
vBuf[i] = 128;
}
fwrite(rBuf, 1, width*height, newyuvFile);
fwrite(uBuf, 1, width*height / 4, newyuvFile);
fwrite(vBuf, 1, width*height / 4, newyuvFile);
for (int i = 0; i < width*height ; i++) {
doBuf[i] = (unsigned char)(dBuf[i])+128;
}
fwrite(doBuf, 1, width*height, pFile);
fwrite(uBuf, 1, width*height / 4, pFile);
fwrite(vBuf, 1, width*height / 4, pFile);
fclose(newyuvFile);
fclose(yuvFile);
fclose(pFile);
// 计算PSNR
int sum=0;
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
sum += abs(pBuf[i*width + j]);
}
}
float MSE = float(sum) / float(width*height);
float PSNR = 10 * log10(65025 / MSE);
printf("PSNR=%f", PSNR);
return 0;
}
2.运行结果
①yuv输出图像
依次为原图像、重建图像和预测误差图像:
②将预测误差文件写入Huffman编码器
在命令行窗口输入:
huff_run.exe -i Lena256B_error.yuv -o Lena_error.huff -c -t Lena_error.txt
概率分布图:
输出txt文件:
③将原文件写入Huffman编码器
在命令行输入:
huff_run.exe -i Lena256B.yuv -o Lena.huff -c -t Lena.txt
概率分布图:
输出txt文件:
④计算压缩比
YUV文件 | 编码后文件 | 系统 | 原文件大小 | 编码后文件大小 | 压缩比 |
Lena256B.yuv | Lena.huff | 仅熵编码 | 96KB | 69KB | 71.875% |
Lena256B_error.yuv | Lena_error.huff | DPCM+熵编码 | 96KB | 55KB | 57.292% |
⑤计算PSNR
3.结果分析
从概率分布图可以看出,预测误差图像的概率分布更集中,像素之间的关联性更高,使用霍夫曼编码进行熵编码的压缩效率更高,即更加适合这种编码方式。而原始图像的概率分布较为均匀,在进行霍夫曼编码时压缩的效率就没有那么高。