最近重新学习组合数学,一开始就看清华大学出版社的卢开澄的【组合数学】,觉得由浅入深,很适合自己,对于有些书一开始就出现高深公式,我的智力一向无法企及。
读的过程中觉得有的例题的结果是有错误的,罗列如下,如果是自己理解计算错误,也不吝指正。也理解理工科书籍成书不易,一些公式下标,正负号之误也是难免,只是多寡之别。
例2.11 求1角,2角,3角邮票可贴出不同邮资方案数的母函数。得出 G(x) = 1+x+2x^2+3x^3+4x^4+5x^5+6x^6+...
实际计算可得到 G(x) = 1+x+2x^2+3x^3+4x^4+5x^5+7x^7+8x^8+10x^10+......
错误产生的原因可能是多项式计算时没有列举完全
A(x) = (1+x+2x^2+3x^3+4x^4+5x^5+6x^6+.)
B(x) = (1+2x^2+4x^4+6x^6+...)
C(x) = (1+3x^3+6x^6+9x^9+....)
G(x) = A(x) * B(x) * C(x)
F(x ) = A(x) * C(x)的多项式计算如下
1 x x^2 x^3 x^4 x^5 x^6 x^7 x^8 x^9 x^10 ............
1 1 1 1 1 1 1 1 1 1 1 1 。。。。。。。。
1 1 1 1 1 1 1 1 1 。。。。。。。。
1 1 1 1 1 1 。。。。。。。。
1 1 1 。。。。。。。。
---------------------------------------------------------------------------------------------------------
1 1 1 2 2 2 3 3 3 4 4 4 。。。。。。。。
G(x) = F(x) * B(x) 多项式计算如下
1 x x^2 x^3 x^4 x^5 x^6 x^7 x^8 x^9 x^10 ............
1 1 1 2 2 2 3 3 3 4 4 4 。。。。。
1 1 1 2 2 2 3 3 3 4 。。。。。
1 1 1 2 2 2 3 3 。。。。。
----------------------------------------------------------------------------------------------------------------------
1 1 2 3 4 5 6 7 8 9 10 11 .。。。。。。。。。。
和书上的结果一致,那问题在哪里呢? 我们再来算一次G(x) = F(x) * B(x)。
1 x x^2 x^3 x^4 x^5 x^6 x^7 x^8 x^9 x^10 ............
1 1 1 2 2 2 3 3 3 4 4 4 。。。。。
1 1 1 2 2 2 3 3 3 4 4 4 。。。。。
1 1 1 2 2 2 3 3 3 4 。。。。。
1 1 1 2 2 2 3 3 。。。。。
1 1 1 2 2 2 。。。。。
1 1 1 2 。。。。。
----------------------------------------------------------------------------------------------------------------------
1 1 2 3 4 5 7 8 10 12 14 .。。。。。。。。。。
明白了吧:)