【组合数学】卢开澄 2002

本文通过对比书中给出的邮票组合方案数母函数与实际计算结果, 发现了书中例题的误差,并详细展示了正确的计算过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  最近重新学习组合数学,一开始就看清华大学出版社的卢开澄的【组合数学】,觉得由浅入深,很适合自己,对于有些书一开始就出现高深公式,我的智力一向无法企及。

  读的过程中觉得有的例题的结果是有错误的,罗列如下,如果是自己理解计算错误,也不吝指正。也理解理工科书籍成书不易,一些公式下标,正负号之误也是难免,只是多寡之别。

例2.11 求1角,2角,3角邮票可贴出不同邮资方案数的母函数。得出 G(x) = 1+x+2x^2+3x^3+4x^4+5x^5+6x^6+...

  实际计算可得到 G(x) = 1+x+2x^2+3x^3+4x^4+5x^5+7x^7+8x^8+10x^10+......

   错误产生的原因可能是多项式计算时没有列举完全

 A(x)   = (1+x+2x^2+3x^3+4x^4+5x^5+6x^6+.)

 B(x) =  (1+2x^2+4x^4+6x^6+...)

 C(x) = (1+3x^3+6x^6+9x^9+....)

    G(x) =  A(x) * B(x) * C(x) 

     F(x ) = A(x) * C(x)的多项式计算如下

   1     x     x^2    x^3    x^4    x^5    x^6    x^7    x^8    x^9    x^10 ............
   1     1      1      1     1      1      1      1      1      1      1       1     。。。。。。。。
                       1     1      1      1      1      1      1      1       1     。。。。。。。。
                                           1      1      1      1      1       1     。。。。。。。。   
                                                                1      1       1     。。。。。。。。
---------------------------------------------------------------------------------------------------------
    1     1     1     2      2      2      3      3      3      4      4       4      。。。。。。。。
G(x) =  F(x) * B(x) 多项式计算如下
   1     x     x^2    x^3    x^4    x^5    x^6    x^7    x^8    x^9    x^10 ............

   1     1      1      2      2      2      3      3      3      4      4      4     。。。。。
                1      1      1      2      2      2      3      3      3      4     。。。。。
                              1      1      1      2      2      2      3      3     。。。。。
----------------------------------------------------------------------------------------------------------------------
    1    1      2      3      4       5     6      7      8      9     10     11  .。。。。。。。。。。
和书上的结果一致,那问题在哪里呢? 我们再来算一次G(x) =  F(x) * B(x)。
   1     x     x^2    x^3    x^4    x^5    x^6    x^7    x^8    x^9    x^10 ............
   1     1      1      2      2      2      3      3      3      4      4      4                 。。。。。
                1      1      1      2      2      2      3      3      3      4      4      4   。。。。。
                              1      1      1      2      2      2      3      3      3      4   。。。。。

                                            1      1     1      2      2      2      3      3   。。。。。

                                                          1     1     1      2      2      2   。。。。。

                                                                      1      1      1      2   。。。。。 ---------------------------------------------------------------------------------------------------------------------- 1 1 2 3 4 5 7 8 10 12 14 .。。。。。。。。。。

明白了吧:)




本书是《组合数学》第3版的修订版,全书共分8章,分别是:排列与组合、递推关系与母函数、容斥原理与鸽巢原理、burnside引理与polya定理、区组设计、线性规划、编码简介、组合算法简介。丰富的实例及理论和实际相结合是本书一大特点,有利于对问题的深入理解。. 本书是计算机系本科生和研究生的教学用书,也可作为数学专业师生的教学参考书。 目录回到顶部↑ 第1章 排列与组合. 1.1 加法法则与乘法法则 1.2 一一对应 1.3 排列与组合 1.3.1 排列与组合的模型 1.3.2 排列与组合问题的举伊 1.4 圆周排列 1.5 排列的生成算法 1.5.1 序数法 1.5.2 字典序法 1.5.3 换位法 1.6 允许重复的组合与不相邻的组合 1.6.1 允许重复的组合 1.6.2 不相邻的组合 1.6.3 线性方程的整数解的个数问题 1.6.4 组合的生成 1.7 组合意义的解释 1.8 应用举例 1.9 stirling公式 1.9.1 wallis公式 .1.9.2 stirling公式的证明 习题 第2章 递推关系与母函数 2.1 递推关系 2.2 母函数 2.3 fibonacci序列 2.3.1 fibonacci序列的递推关系 2.3.2 若干等式 2.4 优选法与fibonacci序列的应用 2.4.1 优选法 2.4.2 优选法的步骤 2.4.3 fibonacci的应用 2.5 母函数的性质 2.6 线性常系数齐次递推关系 2.7 关于线性常系数非齐次递推关系 2.8 整数的拆分 2.9 ferrers图像 2.10 拆分数估计 2.11 指数型母函数 2.11.1 问题的提出 2.11.2 指数型母函数的定义 2.12 广义二项式定理 2.13 应用举例 2.14 非线性递推关系举例 2.14.1 stirling数 2.14.2 catalan数 2.14.3 举例 2.15 递推关系解法的补充 习题 第3章 容斥原理与鸽巢原理 3.1 demorgan定理 3.2 容斥定理 3.3 容斥原理举例 3.4 棋盘多项式与有限制条件的排列 3.5 有禁区的排列 3.6 广义的容斥原理 3.6.1 容斥原理的推广 3.6.2 一般公式 3.7 广义容斥原理的应用 3.8 第二类stirling数的展开式 3.9 欧拉函数φ(n) 3.10 n对夫妻问题 3.11 mobius反演定理 3.12 鸽巢原理 3.13 鸽巢原理举例 3.14 鸽巢原理的推广 3.14.1 推广形式之一 3.14.2 应用举例 3.14.3 推广形式之二 3.15 ramsey数 3.15.1 ramsey问题 3.15.2 ramsey数 习题 第4章 burnside引理与polya定理 4.1 群的概念 4.1.1 定义 4.1.2 群的基本性质 4.2 置换群 4.3 循环、奇循环与偶循环 4.4 burnside引理 4.4.1 若干概念 4.4.2 重要定理 4.4.3 举例说明.. 4.5 polya定理 4.6 举例 4.7 母函数形式的polya定理 4.8 图的计数 4.9 polya定理的若干推广 习题 第5章 区组设计 5.1 问题的提出 5.2 拉丁方与正交的拉丁方 5.2.1 问题的引入 5.2.2 正交拉丁方及其性质 5.3 域的概念 5.4 galois域gf(pm) 5.5 正交拉丁方的构造 5.6 正交拉丁方的应用举例 5.7 均衡不完全的区组设计 5.7.1 基本概念 5.7.2 (b,u,r,k,λ)-设计 5.8 区组设计的构成方法 5.9 steiner三元素 5.10 kirkman女生问题 习题 第6章 线性规划 6.1 问题的提出 6.2 线性规划的问题 6.3 凸集 6.4 线性规划的几何意义 6.5 单纯形法的理论基础 6.5.1 松弛变量 6.5.2 解的充要条件 6.6 单纯形法与单纯形表格 6.7 改善的单纯形法 6.8 对偶概念 6.9 对偶单纯形法 习题 第7章 编码简介 7.1 基本概念 7.2 对称二元信道 7.3 纠错码 7.3.1 最近邻法则 7.3.2 hamming不等式 7.4 若干简单的编码 7.4.1 重复码 7.4.2 奇偶校验码 7.5 线性码 7.5.1 生成矩阵与校验矩阵 7.5.2 关于生成矩阵和校验矩阵的定理 7.5.3 译码步骤 7.6 hamming码 7.7 bch码 习题 第8章 组合算法简介 8.1 归并排序 8.1.1 算法 8.1.2 举例 8.1.3 复杂性分析 8.2 快速排序 8.2.1 算法的描述 8.2.2 复杂性分析 8.3 ford-johnson排序法 8.4 排序的复杂性下界 8.5 求第是个元素 8.6 排序网络 8.6.1 0-1原理 8.6.2 bn网络 8.6.3 复杂性分析 8.6.4 batcher奇偶归并网络 8.7 快速傅里叶变换 8.7.1 问题的提出 8.7.2 预备定理 8.7.3 快速算法 8.7.4 复杂性分析 8.8 dfs算法 8.9 bfs算法 8.10 αβ剪技术 8.11 状态与图 8.12 分支定界法 8.12.1 tsm问题 8.12.2 任务安排问题 8.13 最短树与kruskal算法 8.14 huffman树 8.15 多段判决 8.15.1 问题的提出 8.15.2 最佳原理 8.15.3 矩阵链积问题 8.15.4 图的两点间最短路径
### 回答1: 组合数学卢开澄第五版pdf是一本以组合数学为核心内容,涵盖了组合计数、图论、代数计算、概率统计等多个领域的大型数学教材。本书在理论和应用方面均有较为深入的讲解,并且通过生动的例子和图解,将抽象概念形象化展示,使得读者更容易理解和掌握知识点。此外,本书也针对不同水平的读者,提供了大量习题和参考答案,是一本非常适合自学和教学使用的教材。 该书的章节由浅入深,分别从组合学的基础概念、排列组合、二项式定理、组合计数问题等开始,逐渐深入到图论、代数计算、概率论等领域。在每一章节中,都有详细的例子和练习题,让读者通过多角度、多样化的方式理解和学习。 整本书的风格简洁明了,逻辑性强,许多定理证明都非常精湛,尤其是书中一些具有经典意义的定理,如Ryser公式、Lovász定理等,都有深入的讲解和证明。此外,书中还融入了一些有趣的历史典故和现实应用,如十二干支、五边形数等,使得阅读过程更为轻松愉悦。 总之,组合数学卢开澄第五版pdf可谓是一本良心之作。它不仅提供了详尽的知识点和丰富的习题,还注重实际应用和历史渊源,是组合数学领域的经典教材之一。 ### 回答2: 《组合数学》是一本经典的数学教材,由卢开澄教授编写而成,至今已经出版了五个版本。该教材涵盖了组合数学的基础知识和高级应用,从简单的排列和组合开始,一直到研究图论和多项式计算。其中不仅涉及到各种不同的算法和技巧,还包括了许多实际应用和数学研究的案例。 《组合数学》的第五版是在前四版的基础上进行了更新和完善,新增了一些重要的内容和例题,使得其更加精彩和实用。比如,该教材加入了新的章节,探讨了组合数学在密码学、组合设计、计算几何和有限域等领域的应用,这些领域是现代计算机科学中非常关键的研究方向。 此外,该书的难度逐渐加深,既包括了基础的概念和定理,也包括了一些复杂的分支和问题。因此,对于不同层次和背景的读者来说,都能够获得很好的学习效果和体验,从而更好地掌握组合数学的基础知识和应用技巧。 总之,无论是学生、教师、科学家还是普通读者,都可通过阅读《组合数学》这本书汲取到数学知识和技能,为今后的学习和研究打下基础。而选择卢开澄教授的这本教材,更是因为其深厚的数学功底和丰富的教学经验,为读者提供了一份可靠和有趣的数学指南。 ### 回答3: 组合数学数学中涉及离散对象的一门学科,它涉及组合、排列、选择和分区等不同概念和技术。卢开澄是著名的组合数学家,他在这个领域做出了许多杰出的贡献。 《组合数学》第五版是卢开澄的著作之一,该书涵盖了组合数学的许多经典和重要的主题,例如组合的基础知识、递推关系、生成函数、容斥原理、组合恒等式、拉格朗日反演等。 该书的语言通俗易懂,内容丰富,不仅适合作为大学本科生和研究生的教材,也适合数学工作者和对组合数学感兴趣的人阅读。 除了讲述数学知识,该书还关注了许多具体的问题和应用,例如排队理论、图论、编码理论、离散优化等,在这些领域中,组合数学的方法和技术具有广泛的应用价值。 总之,卢开澄的《组合数学》第五版是一本重要的著作,它对组合数学的理论发展和实际应用都有重大的贡献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值