1.有序数组的平法
题目描述
给你一个按 非递减顺序 排序的整数数组 nums
,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例 1:
输入:nums = [-4,-1,0,3,10] 输出:[0,1,9,16,100] 解释:平方后,数组变为 [16,1,0,9,100]排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11] 输出:[4,9,9,49,121]
思路
暴力求解
很简单,根据题目要求,直接for循环遍历,每个数平方,然后再进行快排
很直观时间复杂度O(n+nlog n)。
主体代码如下:
for (int i = 0; i < A.size(); i++) {
A[i] *= A[i];
}
sort(A.begin(), A.end()); // 快速排序
双指针法
这种方法在数组和链表中及其重要,属于是必须掌握的方法之一。
本题中的数组其实是有序的,只不过数组中可能会有负数,平方以后可能会变成最大值了。
那么数的最大值就会出现在数组的两端。
此时,就可以考虑双指针法,left指向起始位置,right指向终止位置。
定义一个数组用来存放排序后的结果。
过程图如下:
双指针法
代码如下
时间复杂度:O(n)
空间复杂度:0(n)
int left = 0;
int right = nums.length - 1;
int[] result = new int[nums.length]; //结果集
int index = nums.length - 1; //指向结果集的最右端
while(left <= right){
if(nums[left]*nums[left] < nums[right]*nums[right]){
result[index] = nums[right];
index --;
right --;
}else{
result[index] = nums[left];
index --;
left ++;
}
}
return result;
总结
本题还有一个注意的点是创建新数组后,index要指向新数组的最有端,从后往前遍历,因为本题要求是非递减顺序排序。
2.长度最小的子数组
题目描述
给定一个含有 n
个正整数的数组和一个正整数 target
。
找出该数组中满足其总和大于等于 target
的长度最小的
子数组
[numsl, numsl+1, ..., numsr-1, numsr]
,并返回其长度。如果不存在符合条件的子数组,返回 0
。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3]
是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4] 输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1] 输出:0
思路
暴力解法
用两层for循环,不断去寻找满足的子序列,显然可以看出时间复杂度O(n^n)。跑不跑的过具体得看力扣后台给的数据,
滑动窗口法
个人认为有点像高中物理的滑动变阻器。这个也是数组操作重要的方法之一。所谓的滑动窗口法是什么呢,滑动窗口就是不断去调节子序列的起始位置和终止位置,最后找到我们想要的结果。
其实上面的暴力求解方法也是可以看成滑动窗口法的,第一层for循环去调整子序列的起始位置,第二层for循环去调整子序列的终止位置。
如果只要求用一层for循环,你们该怎么去完成这个操作呢?
用一个for循环的话是表示终止位置还是起始位置呢?
如果代表起始位置,如何去遍历终止位置,是不是又回到了暴力求解。
那么for循环一定表示的是终止位置,这时候就该思考起始位置该如何移动?
这是本题最重要的两个问题,解决这两个问题,这道题就迎刃而解了。
举例:输入:target = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3]
过程图如下:
如下三点:
1.窗口内是什么?
2.如何移动窗口的起始位置?
3.如何移动窗口的结束位置?
窗口就是:满足其和 ≥ s 的长度最小的 连续 子数组。
窗口的起始位置如何移动:如果当前窗口的值大于等于s了,窗口就要往数组右端移动了。
窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。
滑动窗口法
代码如下
时间复杂度:O(n)
int sublength = 0;//滑动窗口的长度
int sum = 0; //窗口大小
int left = 0;
int result = Integer.MAX_VALUE //设置最大值
for(int right = 0; right <nums.length; right++){//确定终止位置
sum += nums[right];
while(sum >= target){
sublength = right - left + 1; //子序列的长度
result = result < sublength ? result : sublength; //更新result
sum -= nums[left++];
}
}
return result == Intger.MAX_VALUE ? 0 : result;
总结
有的同学认为上面的时间复杂度为 O(n^n),他认为在for循环中嵌套了一个while循环,时间复杂度就是O(n^n)。其实不然,去画下图,去看每个元素被操作几次。不难发现,每个元素被操作了2次,时间复杂度就是O(2*n),不看系数,时间复杂度O*(n)。