基础算法—数组篇Ⅱ

1.有序数组的平法

力扣链接

题目描述

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。


示例 1:

输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]排序后,数组变为 [0,1,9,16,100]

示例 2:

输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]

思路

暴力求解

很简单,根据题目要求,直接for循环遍历,每个数平方,然后再进行快排

很直观时间复杂度O(n+nlog n)。

主体代码如下:

for (int i = 0; i < A.size(); i++) {
            A[i] *= A[i];
        }
sort(A.begin(), A.end()); // 快速排序

双指针法

这种方法在数组和链表中及其重要,属于是必须掌握的方法之一。

本题中的数组其实是有序的,只不过数组中可能会有负数,平方以后可能会变成最大值了。

那么数的最大值就会出现在数组的两端。

此时,就可以考虑双指针法,left指向起始位置,right指向终止位置。

定义一个数组用来存放排序后的结果。

过程图如下:


双指针法

代码如下

时间复杂度:O(n)

空间复杂度:0(n)

int left = 0;
int right = nums.length - 1;
int[] result = new int[nums.length]; //结果集
int index = nums.length - 1; //指向结果集的最右端
while(left <= right){
 if(nums[left]*nums[left] < nums[right]*nums[right]){
   result[index] = nums[right];
   index --;
   right --; 
  }else{
   result[index] = nums[left];
   index --;
   left  ++;
  }
}
return result;

总结

本题还有一个注意的点是创建新数组后,index要指向新数组的最有端,从后往前遍历,因为本题要求是非递减顺序排序。


2.长度最小的子数组

力扣链接

题目描述

给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其总和大于等于 target 的长度最小的 

子数组

 [numsl, numsl+1, ..., numsr-1, numsr] ,并返回其长度如果不存在符合条件的子数组,返回 0 。


示例 1:

输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。

示例 2:

输入:target = 4, nums = [1,4,4]
输出:1

示例 3:

输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0

思路

暴力解法

用两层for循环,不断去寻找满足的子序列,显然可以看出时间复杂度O(n^n)。跑不跑的过具体得看力扣后台给的数据,

滑动窗口法

个人认为有点像高中物理的滑动变阻器。这个也是数组操作重要的方法之一。所谓的滑动窗口法是什么呢,滑动窗口就是不断去调节子序列的起始位置和终止位置,最后找到我们想要的结果。

其实上面的暴力求解方法也是可以看成滑动窗口法的,第一层for循环去调整子序列的起始位置,第二层for循环去调整子序列的终止位置。

如果只要求用一层for循环,你们该怎么去完成这个操作呢?

用一个for循环的话是表示终止位置还是起始位置呢?

如果代表起始位置,如何去遍历终止位置,是不是又回到了暴力求解。

那么for循环一定表示的是终止位置,这时候就该思考起始位置该如何移动?

这是本题最重要的两个问题,解决这两个问题,这道题就迎刃而解了。

举例:输入:target = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3]

过程图如下:

如下三点:

1.窗口内是什么?

2.如何移动窗口的起始位置?

3.如何移动窗口的结束位置?

窗口就是:满足其和 ≥ s 的长度最小的 连续 子数组。

窗口的起始位置如何移动:如果当前窗口的值大于等于s了,窗口就要往数组右端移动了。

窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。


滑动窗口法

代码如下

时间复杂度:O(n)

int sublength = 0;//滑动窗口的长度
int sum = 0; //窗口大小
int left = 0;
int result = Integer.MAX_VALUE //设置最大值

for(int right = 0; right <nums.length; right++){//确定终止位置
 sum += nums[right];
 while(sum >= target){
   sublength = right - left + 1; //子序列的长度
   result = result < sublength ? result : sublength; //更新result
   sum -= nums[left++];
  }

}
return result == Intger.MAX_VALUE ? 0 : result;

总结

有的同学认为上面的时间复杂度为 O(n^n),他认为在for循环中嵌套了一个while循环,时间复杂度就是O(n^n)。其实不然,去画下图,去看每个元素被操作几次。不难发现,每个元素被操作了2次,时间复杂度就是O(2*n),不看系数,时间复杂度O*(n)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值