B13_NumPy数学函数(三角函数,舍入函数)

NumPy数学函数

NumPy 包含大量的各种数学运算的函数,包括三角函数,算术运算的函数,复数处理函数等。

三角函数

NumPy提供了标准的三角函数:sin()、cos()、tan()。
实例

import numpy as np

a = np.array([0, 30, 45, 60, 90])
print('不同角度的正弦值:')
# 通过乘 pi/180 转化为弧度
print(np.sin(a * np.pi / 180))
print('\n')
print('数组中角度的余弦值:')
print(np.cos(a * np.pi / 180))
print('\n')
print('数组中角度的正切值:')
print(np.tan(a * np.pi / 180))

输出结果为:

不同角度的正弦值:
[0.         0.5        0.70710678 0.8660254  1.        ]
数组中角度的余弦值:
[1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01
 6.12323400e-17]
数组中角度的正切值:
[0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00
 1.63312394e+16]

实例:

import numpy as np

a = np.array([0, 30, 45, 60, 90])
print('含有正弦值的数组:')
sin = np.sin(a * np.pi / 180)
print(sin)
print('\n')
print('计算角度的反正弦,返回值以弧度为单位:')
inv = np.arcsin(sin)
print(inv)
print('\n')
print('通过转化为角度制来检查结果:')
print(np.degrees(inv))
print('\n')
print('arccos 和 arctan 函数行为类似:')
cos = np.cos(a * np.pi / 180)
print(cos)
print('\n')
print('反余弦:')
inv = np.arccos(cos)
print(inv)
print('\n')
print('角度制单位:')
print(np.degrees(inv))
print('\n')
print('tan 函数:')
tan = np.tan(a * np.pi / 180)
print(tan)
print('\n')
print('反正切:')
inv = np.arctan(tan)
print(inv)
print('\n')
print('角度制单位:')
print(np.degrees(inv))

输出结果为:

含有正弦值的数组:
[0.         0.5        0.70710678 0.8660254  1.        ]
计算角度的反正弦,返回值以弧度为单位:
[0.         0.52359878 0.78539816 1.04719755 1.57079633]
通过转化为角度制来检查结果:
[ 0. 30. 45. 60. 90.]
arccos 和 arctan 函数行为类似:
[1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01
 6.12323400e-17]
反余弦:
[0.         0.52359878 0.78539816 1.04719755 1.57079633]
角度制单位:
[ 0. 30. 45. 60. 90.]
tan 函数:
[0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00
 1.63312394e+16]
反正切:
[0.         0.52359878 0.78539816 1.04719755 1.57079633]
角度制单位:
[ 0. 30. 45. 60. 90.]
舍入函数

numpy.around() 函数返回指定数字的四舍五入值。

numpy.around(a,decimals)

参数说明:

  • a: 数组
  • decimals:舍入的小数位数。默认值为0,如果为负,整数将四舍五入到小数点左侧的位置

实例:

import numpy as np

a = np.array([1.0,5.55,  123,  0.567,  25.532])
print('原数组:')
print(a)
print('\n')
print('舍入后:')
print(np.around(a))
print(np.around(a,decimals = 1))
print(np.around(a,decimals=-1))

输出结果为:

原数组:
[  1.      5.55  123.      0.567  25.532]
舍入后:
[  1.   6. 123.   1.  26.]
[  1.    5.6 123.    0.6  25.5]
[  0.  10. 120.   0.  30.]
numpy.floor()

numpy.floor() 返回小于或者等于指定表达式的最大整数,即向下取整。

import numpy as np

a = np.array([-1.7, 1.5, -0.2, 0.6, 10])
print('提供的数组:')
print(a)
print('\n')
print('修改后的数组:')
print(np.floor(a))

输出结果为:

提供的数组:
[-1.7  1.5 -0.2  0.6 10. ]
修改后的数组:
[-2.  1. -1.  0. 10.]
numpy.ceil()

numpy.ceil() 返回大于或者等于指定表达式的最小整数,即向上取整。

import numpy as np

a = np.array([-1.7, 1.5, -0.2, 0.6, 10])
print('提供的数组:')
print(a)
print('\n')
print('修改后的数组:')
print(np.ceil(a))

输出结果为:

提供的数组:
[-1.7  1.5 -0.2  0.6 10. ]
修改后的数组:
[-1.  2. -0.  1. 10.]
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
双仿射变换是一种二维图像变换方法,它可以将一个平面上的图形转换成另一个平面上的图形。计算双仿射变换的梯度函数可以帮助我们在图像处理中实现图像的变换。 计算双仿射变换的梯度函数需要用到矩阵运算。具体实现过程如下: 1. 定义双仿射变换的矩阵公式: \begin{equation} \begin{pmatrix}x'\\y'\\1\end{pmatrix}=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\0&0&1\end{pmatrix}\begin{pmatrix}x\\y\\1\end{pmatrix}\begin{pmatrix}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\0&0&1\end{pmatrix} \end{equation} 其中,$x'$和$y'$是变换后的坐标,$x$和$y$是变换前的坐标,$a_{ij}$和$b_{ij}$是变换矩阵的参数。 2. 对公式进行求导,得到双仿射变换的梯度函数: \begin{equation} \begin{pmatrix}\frac{\partial{x'}}{\partial{x}}&\frac{\partial{x'}}{\partial{y}}\\\frac{\partial{y'}}{\partial{x}}&\frac{\partial{y'}}{\partial{y}}\end{pmatrix}=\begin{pmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{pmatrix}\begin{pmatrix}b_{11}&b_{12}\\b_{21}&b_{22}\end{pmatrix} \end{equation} 3. 将矩阵公式转换为代码实现: ```python import numpy as np def affine_gradient(A, B): # A: 2x3 matrix # B: 2x3 matrix # extract parameters from matrices a11, a12, a13 = A[0] a21, a22, a23 = A[1] b11, b12, b13 = B[0] b21, b22, b23 = B[1] # compute gradient matrix grad = np.array([[a11*b11 + a12*b21, a11*b12 + a12*b22], [a21*b11 + a22*b21, a21*b12 + a22*b22]]) return grad ``` 其中,A和B分别是双仿射变换的矩阵,它们的形状为2x3。函数返回的grad是双仿射变换的梯度矩阵,形状也为2x2。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值