11_Pulsar Adaptors适配器、kafka适配器、Spark适配器

文章介绍了如何使用PulsarAdaptors,特别是Kafka和Spark的适配器,包括如何在不改变原有Kafka代码结构的情况下将其与Pulsar集成,以及如何在SparkStreaming中接收Pulsar数据。详细展示了生产者和消费者的示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2.3. Pulsar Adaptors适配器
2.3.1.kafka适配器
2.3.2.Spark适配器

2.3. Pulsar Adaptors适配器

2.3.1.kafka适配器

Pulsar 为使用 Apache Kafka Java 客户端 API 编写的应用程序提供了一个简单的解决方案。
在生产者中, 如果想不改变原有kafka的代码架构, 就切换到Pulsar的平台中, 那么Pulsar adaptor on kafka就变的非常的有用了, 它可以帮助我们在不改变原有kafka的代码基础上, 即可接入pulsar, 但是需要注意, 相关配置信息需要进行一些调整, 例如: 地址与topic

  • 1- 需要导入Pulsar集成kafka的依赖包, 删除掉原有Kafka-client包
<dependency> 
     <groupId>org.apache.pulsar</groupId> 
     <artifactId>pulsar-client-kafka</artifactId> 
     <version>2.8.0</version> 
</dependency>

注: 目前Pulsar并在Maven中央仓库中并没有提供Pulsar-client-kafka 2.8.1的包, 故此处导入2.8.0

  • 2-编写生产者
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;
import java.util.concurrent.ExecutionException;

public class KafkaAdaptorProducer {

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        //1. 创建kafka生产者的核心类对象: KafkaProducer
        // 1.1: 创建生产者配置对象: 设置相关配置
        Properties props = new Properties();
        props.put("bootstrap.servers", "pulsar://node1:6650,node2:6650,node3:6650");
        // 消息的确认方案
        props.put("acks", "all");
        // key序列化类型
        props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        // value 序列化类型
        props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        Producer<String, String> producer = new KafkaProducer<>(props); 
        //2. 发送数据 
        for (int i = 0; i < 10; i++) { 
            //2.1: 创建 生产者数据承载对象 一个对象代表是一条消息数据
            ProducerRecord<String, String> producerRecord = new ProducerRecord<>("persistent://public/default/txn_t1",Integer.toString(i), Integer.toString(i)); 
            producer.send(producerRecord).get(); 
        }
        
        //3. 释放资源 
        producer.close();
    }

}
  • 3-编写消费者
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

public class KafkaAdaptorConsumer {
    public static void main(String[] args) {
        //1. 创建kafka的消费者的核心对象: KafkaConsumer
        //1.1: 创建消费者配置对象, 并设置相关的参数:
        Properties props = new Properties();
        props.setProperty("bootstrap.servers", "pulsar://node1:6650,node2:6650,node3:6650");
        //消费者组的 id
        props.setProperty("group.id", "test");
        //是否启动消费者自动提交消费偏移量
        props.setProperty("enable.auto.commit", "true");
        //每间隔多长时间提交一次偏移量:单位 毫秒
        props.setProperty("auto.commit.interval.ms","1000");
        //key 反序列化
        props.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        //val 发序列化
        props.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        //2. 给消费者设置订阅topic:
        consumer.subscribe(Arrays.asList("persistent://public/default/txn_t1"));
        //3. 循环获取相关的消息数据
        while (true) {
            //3.1: 从kafka中获取消息数据: 参数表示等待超时时间
            //注意: 如果没有获取到数据, 返回一个空集合对象, 如果数据集合中有多个 ConsumerRecord 对象
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
            //3.2 遍历ConsumerRecords 获取每一个 ConsumerRecord 对象 : ConsumerRecord 消费者数据承载对象, 一个对象就是一条消息
            for (ConsumerRecord<String, String> record : records) {
                String massage = record.value();
                System.out.println("消息数据为:"+massage);
            }
        } 
    } 
}
  • 4- 先运行消费者, 进行监听, 然后运行生产者, 观察消费者是否可以正常消费到数据
    在这里插入图片描述

2.3.2.Spark适配器

Pulsar 的 Spark Streaming 接收器是一个自定义的接收器,它使用 Apache Spark Streaming 能够从 Pulsar 接
收原始数据。

应用程序可以通过 Spark Streaming receiver 接收 Resilient Distributed Dataset (RDD) 格式的数据,并可
以通过多种方式对其进行处理。

  • 1-导入相关的依赖包
<dependency>
    <groupId>org.apache.pulsar</groupId>
    <artifactId>pulsar-spark</artifactId>
    <version>2.8.0</version>
</dependency>
  • 2-编写spark的流式代码
String serviceUrl = "pulsar://localhost:6650/"; 
String topic = "persistent://public/default/test_src"; 
String subs = "test_sub"; 
SparkConf sparkConf = new SparkConf().setMaster("local[*]").setAppName("Pulsar Spark Example"); 
JavaStreamingContext jsc = new JavaStreamingContext(sparkConf, Durations.seconds(60)); 
ConsumerConfigurationData<byte[]> pulsarConf = new ConsumerConfigurationData(); 
Set<String> set = new HashSet<>(); 
set.add(topic); 
pulsarConf.setTopicNames(set); 
pulsarConf.setSubscriptionName(subs); 
SparkStreamingPulsarReceiver pulsarReceiver = new SparkStreamingPulsarReceiver( 
serviceUrl, 
pulsarConf, 
new AuthenticationDisabled()); 
JavaReceiverInputDStream<byte[]> lineDStream = jsc.receiverStream(pulsarReceiver);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

涂作权的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值