TensorFlow1(一)全连接神经网络识别mnist数据集

首先我们来介绍一下mnist数据集

MNIST数据集由Yann LeCun搜集,是一个大型的手写体数字数据库,通常用于训练各种图像处理系统,也被广泛用于机器学习领域的训练和测试。MNIST数字文字识别数据集数据量不会太多,而且是单色的图像,较简单,适合深度学习初学者练习建立模型、训练、预测。MNIST数据库中的图像集是NIST(National Institute of Standards and Technology)的两个数据库的组合:专用数据库1和特殊数据库3。数据集是有250人手写数字组成,一半是高中生,一半是美国人口普查局。

MNIST数据集共有训练数据60000项、测试数据10000项。每张图像的大小为28*28(像素),每张图像都为灰度图像,位深度为8(灰度图像是0-255)。

模型(一)

这个模型是一个比较简单的全连接神经网络,我设置了两个全连接层,矩阵规格的变化如下:

( [ None , 28 * 28 ] * [ 28 * 28 , 10 ] + [ 10 ] ) * [ 10 , 10 ] + [ 10 ]

其中第一个全连接层的权重为[ 28 * 28 , 10 ] ,偏置为 [ 10 ]

其中第二个全连接层的权重为[ 10 , 10 ] ,偏置为 [ 10 ]

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

def full_connect():
    # 用全连接对手写数字进行识别
    # 1、准备数据
    mnist = input_data.read_data_sets("data", one_hot=True)
    x = tf.placeholder(dtype=tf.float32,shape=[None,28*28])
    y_true = tf.placeholder(dtype=tf.float32,shape=[None,10])

    # 2、构建模型
    Weights_1 = tf.Variable(initial_value=tf.random_normal(shape=[784,10]))
    bias_1 = tf.Variable(initial_value=tf.random_normal(shape=[10]))
    Weights_2 = tf.Variable(initial_value=tf.random_normal(shape=[10,10]))
    bias_2 = tf.Variable(initial_value=tf.random_normal(shape=[10]))
    middle = tf.
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值