[nlp] NLP下游任务

BERT预训练模型简化了NLP任务的处理,通过添加特定结构进行微调即可应用于句子对分类、单句分类、问答任务和单句标注任务(如NER)。句子对分类包括自然语言推理,单句分类涉及情感分析和语言可接受性判断,问答任务涵盖抽取式和生成式摘要,NER则用于识别序列中的命名实体。通过在BERT模型后添加分类层和CRF层,模型能更好地处理这些任务。

BERT四大下游任务 - 知乎 

BERT等预训练模型的提出,简化了我们对NLP任务精心设计特定体系结构的需求,我们只需在BERT等预训练模型之后下接一些网络结构,即可出色地完成特定任务。

原因也非常简单,BERT等预训练模型通过大量语料的无监督学习,已经将 语料中的知识迁移进了预训练模型的Eembedding 中,为此我们只需在 针对特定任务增加结构来进行微调,即可适应当前任务,这也是迁移学习的魔力所在。

BERT在概念上很简单,在经验上也很强大。它推动了11项自然语言处理任务的最新技术成果,而这11项NLP任务可分类为四大自然语言处理下游任务。为此,笔者将以BERT预训练模型为例子,对自然语言处理的四大下游任务进行介绍。

下游任务比如 句子对分类、单句分类、问答任务、单句标注任务(NER)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心心喵

喵喵(*^▽^*)

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值