[tensorflow]sparse_softmax_cross_entropy_with_logits 与 softmax_cross_entropy_with_logits的区别

本文详细解析了tf.nn.sparse_softmax_cross_entropy_with_logits与tf.nn.softmax_cross_entropy_with_logits的区别。前者接受直接的数字标签,后者则需要one-hot形式的标签。通过对比两种函数的应用场景,帮助读者理解其工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原函数:
tf.nn.sparse_softmax_cross'_entropy_with_logits(logits=net, labels=y)
tf.nn.softmax_cross_entropy_with_logits(logits=net, labels=y2)

sparse_softmax_cross_entropy_with_logits中 lables接受直接的数字标签
如[1], [2], [3], [4] (类型只能为int32,int64)
而softmax_cross_entropy_with_logits中 labels接受one-hot标签
如[1,0,0,0], [0,1,0,0],[0,0,1,0], [0,0,0,1] (类型为int32, int64)

相当于sparse_softmax_cross_entropy_with_logits 对标签多做一个one-hot动作

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值