图像放大与去噪技术:原理、算法及性能评估
1. 图像放大新技术
在图像放大过程中,与像素 $p_{i,j}$ 不同邻域相关联的块可能会重叠,且重叠涉及的像素数量也可能不同。因此,需要计算适当的权重,来确定与 $p_{i,j}$ 相关联的 $n×n$ 块中每个像素的灰度值。
在高分辨率(HR)中,与 $p_{i,j}$ 相关联的 $n×n$ 块中每个像素 $q_{i’,j’}$ 的坐标计算如下:
$i’ = ni + k$,$j’ = nj + h$,其中 $k = 0…n - 1$,$h = 0…n - 1$。
在低分辨率(LR)中,设 $z$ 是 $p_{i,j}$ 为中心的 $3×3$ 窗口中的任意一个像素,即 $z \in {tl, t, tr, l, p_{i,j}, r, bl, b, br}$。对于每个 $z$,设 $z^{#}$ 表示 HR 中与 $z$ 相关联的 $n×n$ 块和与 $p_{i,j}$ 对应的每个 $q_{i’,j’}$ 相关联的 $m×m$ 邻域之间的像素交集数量。具体而言,$z^{#}$ 由以下表达式给出:
- $tl^{#} = a(k) × a(h)$
- $t^{#} = c(k) × a(h)$
- $tr^{#} = b(k) × a(h)$
- $l^{#} = a(k) × c(h)$
- $p_{i,j}^{#} = c(k) × c(h)$
- $r^{#} = b(k) × c(h)$
- $bl^{#} = a(k) × b(h)$
- $b^{#} = c(k) × b(h)$
- $br^{#} = b(k) × b(h)$ <
订阅专栏 解锁全文
2

被折叠的 条评论
为什么被折叠?



