Bagging & RF

Bagging

算法流程如下:

  1. 从原始样本中使用Bootstraping方法有放回地随机抽取 n n n 个训练样本,共进行 k k k 轮抽取,得到 k k k 个训练集;
  2. 对于 k k k 个训练集,分别训练出 k k k 个模型;
  3. 在对预测输出进行结合时:
    • 分类:简单投票法
    • 回归:简单平均法

RF

RF在以决策树为基学习器构建Bagging集成的基础上,进一步在决策树的训练过程中引入了随机属性选择。

传统决策树在选择划分属性时是在当前结点的属性集合(假设有 d d d 个属性)中选择一个最优属性;而在RF中,对基决策树的每个结点,先从该结点的属性集合中随机选择一个包含 k k k 个属性的子集,然后再从这个子集中选择一个最优属性用于划分。 k k k 控制了随机性的引入程度:

  • k = d k=d k=d :基决策树的构建与传统决策树相同;
  • k = 1 k=1 k=1 :随机选择一个属性进行划分;

RF简单、容易实现、计算开销小,但是性能却非常强大。

结合策略

对于输出值连续型,最常用的结合策略是使用平均法:

平均法
  • 简单平均法:

H ( x ) = 1 T ∑ i = 1 T h i ( x ) H(x) = \frac{1}{T} \sum_{i=1}^T h_i(x) H(x)=T1i=1Thi(x)

  • 加权平均法:

H ( x ) = ∑ i = 1 T w i h i ( x ) , ∑ i = 1 T w i = 1 H(x) = \sum_{i=1}^T w_i h_i(x), \quad \sum_{i=1}^T w_i = 1 H(x)=i=1Twihi(x),i=1Twi=1

w i w_i wi 一般是从训练数据中学习而得。

在个体学习器性能相差较大时使用加权平均法,反之使用简单平均法。

投票法

对于分类任务来说,假设有 { c 1 , c 2 , … , c N } \{ c_1, c_2, \dots, c_N \} {c1,c2,,cN} 个类别。最常用的结合策略是使用投票法:

  • 绝对多数投票法:

H ( x ) = { c j , i f   ∑ i = 1 T h i j ( x ) > 0.5 ∑ k = 1 N ∑ i = 1 T h i k ( x ) ; r e j e c t , o t h e r w i s e H(x) = \begin{cases} c_j,& if \ \sum_{i=1}^T h_i^j(x) > 0.5\sum_{k=1}^N \sum_{i=1}^T h_i^k(x);\\ reject, & otherwise \end{cases} H(x)={cj,reject,if i=1Thij(x)>0.5k=1Ni=1Thik(x)otherwise

即某类别得票过半数,则预测为该类别;否则拒绝预测。

  • 相对多数投票法:

H ( x ) = c a r g m a x j ∑ i = 1 T h i j ( x ) H(x) = c_{argmax_j} \sum_{i=1}^T h_i^j(x) H(x)=cargmaxji=1Thij(x)

即预测为得票最多的类别,若同时有多个类别获得最高票,则从中随机选择一个类别。

  • 加权投票法:

H ( x ) = c a r g m a x j ∑ i = 1 T w i h i j ( x ) , ∑ i = 1 T w i = 1 H(x) = c_{argmax_j} \sum_{i=1}^T w_i h_i^j(x), \quad \sum_{i=1}^T w_i = 1 H(x)=cargmaxji=1Twihij(x),i=1Twi=1

学习法

当训练数据很多时,一种更为强大的结合策略是使用”学习法“,即通过另一个学习来结合,典型代表就是Stacking。这里把个体学习器称为初级学习器,用于结合的学习器称为次级学习器或元学习器。

Stacking先从初始数据集训练出初级学习器,然后”生成“一个新数据集用于训练次级学习器。在这个新数据集中,初级学习器的输出被当作样例输入特征,而初始样本的标记仍被当作样例标记。算法流程如下:

stacking

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值