EOM公式推导

在uplift建模中,除了AUUC、QINI指标,还有EOM。它是基于离线RCT模拟评估在线业务收益的指标,EOM越高,业务收益越高。

记录下EOM的公式推导EOM这个推导依赖于概率论中的两个核心概念

  1. 全期望定律 (Law of Total Expectation)
  2. 随机实验中的独立性 (Independence in Randomized Experiments)

目标: 证明 E [ Z ] = E [ Y ∣ T = h ( X ) ] \text{E}[Z] = \text{E}[Y | T = h(\mathbf{X})] E[Z]=E[YT=h(X)]

其中,随机变量 Z Z Z 的定义为:
Z = ∑ t = 0 K 1 p t Y I { h ( X ) = t } I { T = t } Z = \sum_{t=0}^{K} \frac{1}{p_t} Y \mathbb{I}\{h(\mathbf{X}) = t\} \mathbb{I}\{T = t\} Z=t=0Kpt1YI{ h(X)=t}I{ T=t}
这里 p t = P ( T = t ) p_t = P(T=t) pt=P(T=t) 是用户被分配到干预 t t t 的概率。

第一步:代入 Z Z Z 的定义并利用期望的线性性

期望 E [ ⋅ ] \text{E}[\cdot] E[] 具有线性性,因此我们可以将期望 E [ Z ] \text{E}[Z] E[Z] 拆分成和式的期望:
E [ Z ] = E [ ∑ t = 0 K 1 p t Y I { h ( X ) = t } I { T = t } ] \text{E}[Z] = \text{E}\left[\sum_{t=0}^{K} \frac{1}{p_t} Y \mathbb{I}\{h(\mathbf{X}) = t\} \mathbb{I}\{T = t\}\right] E[Z]=E[t=0Kpt1YI{ h(X)=t}I{ T=t}]

将求和 ∑ \sum 和常量 1 p t \frac{1}{p_t}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值