在uplift建模中,除了AUUC、QINI指标,还有EOM。它是基于离线RCT模拟评估在线业务收益的指标,EOM越高,业务收益越高。
记录下EOM的公式推导
这个推导依赖于概率论中的两个核心概念:
- 全期望定律 (Law of Total Expectation)
- 随机实验中的独立性 (Independence in Randomized Experiments)
目标: 证明 E [ Z ] = E [ Y ∣ T = h ( X ) ] \text{E}[Z] = \text{E}[Y | T = h(\mathbf{X})] E[Z]=E[Y∣T=h(X)]
其中,随机变量 Z Z Z 的定义为:
Z = ∑ t = 0 K 1 p t Y I { h ( X ) = t } I { T = t } Z = \sum_{t=0}^{K} \frac{1}{p_t} Y \mathbb{I}\{h(\mathbf{X}) = t\} \mathbb{I}\{T = t\} Z=t=0∑Kpt1YI{
h(X)=t}I{
T=t}
这里 p t = P ( T = t ) p_t = P(T=t) pt=P(T=t) 是用户被分配到干预 t t t 的概率。
第一步:代入 Z Z Z 的定义并利用期望的线性性
期望 E [ ⋅ ] \text{E}[\cdot] E[⋅] 具有线性性,因此我们可以将期望 E [ Z ] \text{E}[Z] E[Z] 拆分成和式的期望:
E [ Z ] = E [ ∑ t = 0 K 1 p t Y I { h ( X ) = t } I { T = t } ] \text{E}[Z] = \text{E}\left[\sum_{t=0}^{K} \frac{1}{p_t} Y \mathbb{I}\{h(\mathbf{X}) = t\} \mathbb{I}\{T = t\}\right] E[Z]=E[t=0∑Kpt1YI{
h(X)=t}I{
T=t}]
将求和 ∑ \sum ∑ 和常量 1 p t \frac{1}{p_t}

最低0.47元/天 解锁文章
2680

被折叠的 条评论
为什么被折叠?



