论文笔记:Deep Convolutional Neural Network On Multichannel Time Series For Human Activity Recognition

本文介绍了一种使用深度卷积神经网络(DCNN)对来自多个穿戴设备传感器的时间序列数据进行人类活动识别的方法。通过时间划分、特征提取、卷积操作等步骤,实现对人物当前动作的精准分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Deep Convolutional Neural Network On Multichannel Time Series For Human Activity Recognition

输入:来自不同穿戴设备传感器的时间序列的值。
输出:当前人物的动作

步骤:

  1. 对于多个穿戴设备的时间序列进行时间划分
    在这里插入图片描述
  2. 对每个划分使用卷提取特征
  3. 采样/pooling
  4. 卷积
  5. D-densor
    在这里插入图片描述
  6. 全连接
  7. sofrmax进行分类学习

其中的细节有很多,尤其是网络的搭建,不在详述。
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值