MMPretrain环境配置安装

通过下面的一些命令就可以看到昨天理论课中提到的一些内容,比如经典主干网络的ResNet,多模态算法中BLIP等。安装配置好环境就可以做相应的训练了。

环境准备

首先准备python环境,先激活自己的虚拟环境

conda activate openmmlab
# 这里的openmmlab是我的虚拟环境名称,大家改为自己的虚拟环境名称即可

之前安装了MMPose和MMDetection的就已经安装了torch和cuda环境,没有安装的可以去前面的文章看看。
进入python交互式环境中

ipython

检查一下自己的pytorch的cuda支持

import torch
torch.__version__
torch.cuda.is_available()
exit()

在这里插入图片描述

安装MMPretrain算法库

git clone https://github.com/open-mmlab/mmpretrain

进入主目录

cd mmpretrain

安装mim

pip install openmim
# 可以通过下面的命令查看如何使用mim
mim --help

安装mmpretrain算法库

mim install -e ".[multimodal]"

安装好后就可以调用mmpretrain的模型进行推理。

应用

接下来演示一下图像分类和多模态中的描述功能。
进入python交互式环境

ipython
import mmpretrain
# 查看mmpretrain安装版本
mmpretrain.__version__
# 导入一些高阶的API,分别用来模型获取,模型列举,模型推理
from mmpretrain import get_model,list_models,inference_model
# 获取分类相关的模型
list_models(task='Image Classification',pattern='resnet18')
# 获取图像描述相关的模型
list_models(task='Image Caption',pattern='blip')
model = get_model('resnet18_8xb16_cifar10')
type(model)
model = get_model('resnet18_8xb32_in1k')
type(model.backbone)
# 没有加载预训练权重,所以推理结果应该是混乱的
inference_model(model,'demo/bird.JPEG',show=True)

在这里插入图片描述

在这里插入图片描述

list_models(task='Image Caption',pattern='blip')
inference_model('blip-base_3rdparty_caption','demo/cat-dog.png',show=True)

在这里插入图片描述
可以看到图像有描述信息了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值