1、插入排序
插入排序是最简单、最自然的排序方法,通过保证A[1..j-1]已排序,来将A[j]插入到A[1..j-1]中,从而保证A[1..j]有序。
<span style="font-size:18px;">void ztInsertSort(int *begin, int *end)//插入排序
{
int n=end-begin;
int tmp=0,i=0,j=0;
for(i=1;i<n;++i){
for(tmp=begin[i],j=i-1;j>=0;--j)
if(tmp<begin[j]) begin[j+1]=begin[j];
else break;
begin[j+1]=tmp;
}
}</span>
2、冒泡排序
冒泡排序是很形象的一种算法,每次对数组从后往前两两比较,若A[j-1]>A[j],j-1>=i 则交换,否则继续往前比较。这样造成的结果是,每次从后往前比较完一轮后,最小的元素都跑到最前面(即每轮结束后,最小的元素都像气泡一样,浮出水面),从而有A[1..i]是有序的,且A[1..i]中任何一个数都比A[i+1..n]中的小。
<span style="font-size:18px;">void ztBubbleSort(int *begin, int *end)//冒泡排序
{
int n=end-begin,tmp=0;
for(int i=0;i<n-1;++i)
for(int j=n-1;j>i;--j)
if(begin[j] < begin[j-1]){
tmp=begin[j-1];begin[j-1]=begin[j];begin[j]=tmp;
}
}</span>
3、归并排序
归并排序利用分治的思想,将A[1..n]分割为A[1..n/2]和A[n/2+1,n],它们分别排序,然后合并它们,这样就形成递归树,每层的合并有序的数组的排序时间复杂度为O(n),总共为log n层,所以时间复杂度为O(nlogn)。
<span style="font-size:18px;">void ztMerge(int *a,int *m,int *b)
{
if(a==m && m+1==b) return;
if(a!=m || m+1!=b) {ztInsertSort(a,b+1);return;}
int len1=m-a+1, len2=b-m;
ztMerge(a,a+len1/2,m);
ztMerge(m+1,m+1+len2/2,b);
int cp1[len1],cp2[len2];
for(int i=0;i<len1;++i) cp1[i]=a[i];
for(int j=0;j<len2;++j) cp2[j]=a[len1+j];
int i=0,j=0,k=0;
for(;i<len1 && j<len2;)
{
if(cp1[i]<cp2[j]) {a[k++]=cp1[i];++i;}
else {a[k++]=cp2[i];++j;}
}
if(i==len1) {while(j<len2) a[k++]=cp2[j++];}
else {while(i<len1) a[k++]=cp1[i++];}
}
void ztMergeSort(int *begin, int *end)//归并排序
{
int n=end-begin;
ztMerge(begin,begin+n/2,end-1);
}</span>
<span style="font-size:18px;">void ztMerge(int *a,int *m,int *b)
{
if(a==m && m+1==b) return;
if(a!=m || m+1!=b) {ztInsertSort(a,b+1);return;}
int len1=m-a+1, len2=b-m;
ztMerge(a,a+len1/2,m);
ztMerge(m+1,m+1+len2/2,b);
int cp1[len1],cp2[len2];
for(int i=0;i<len1;++i) cp1[i]=a[i];
for(int j=0;j<len2;++j) cp2[j]=a[len1+j];
int i=0,j=0,k=0;
for(;i<len1 && j<len2;)
{
if(cp1[i]<cp2[j]) {a[k++]=cp1[i];++i;}
else {a[k++]=cp2[i];++j;}
}
if(i==len1) {while(j<len2) a[k++]=cp2[j++];}
else {while(i<len1) a[k++]=cp1[i++];}
}
void ztMergeSort(int *begin, int *end)//归并排序
{
int n=end-begin;
ztMerge(begin,begin+n/2,end-1);
}</span>