微积分主要包含两个互不的方面:
导数(微分):主要研究函数在局部的变化速率。如根据物体的位置函数求其移动速度。被广泛的应用于工程实现。
积分:常被用于计算函数在一段范围内的累积效应。针对连续型随机变量,根据他的概率密度函数,计算随机变量落在某区间内的概率。 主要应用理论研究。
导数和积分:位置、速度
位置l(t)为t时刻离起点的距离
速度v(t)为t时刻的速度
二者是相互关联的,速度是位置的瞬间变化,位置是速度在一段时间内的积累。
数学上的导数计算其实就是求函数的极限;