60、基于LSTM与微夹持器的技术研究

基于LSTM与微夹持器的技术研究

在当今的科技领域,跌倒预测和微机电系统(MEMS)中的微夹持器设计都是备受关注的方向。下面将分别介绍基于LSTM的跌倒预测方法以及一种由电热V形致动器驱动的微夹持器。

基于LSTM的跌倒预测方法
实验设计与数据采集

23 - 24岁的J. Peng等人进行了7种活动,包括2种跌倒类型和5种日常生活活动(ADL),每种活动重复5次。选择向前跌倒和侧面跌倒这两种最常见的跌倒方式,而表1中的ADL则是基于常见活动、与跌倒加速度趋势相似的动作或高频高幅运动来选择的,目的是提高模型的特异性并降低误报率。除慢跑外,受试者在每次活动前都被要求短距离行走。

LSTM基础理论

循环神经网络(RNN)是一种用于处理序列数据的深度学习模型。与前馈神经网络不同,当前隐藏单元受之前所有隐藏单元的影响,且影响随距离该节点的距离增加而减小。但由于梯度消失问题,RNN只能捕捉短序列的时间依赖性。

长短期记忆网络(LSTM)是改进后的RNN模型,克服了这一缺陷。LSTM单元由一个记忆单元和三个门(遗忘门、输入门和输出门)组成。遗忘门根据当前输入过滤无用信息,保留有效信息以实现长期记忆;输入门选择性地将当前节点的新信息添加到单元状态;输出门将重组后的信息保存到隐藏层。

基于LSTM的跌倒预测
  • 数据预处理 :每个参与者对每种活动进行5轮。数据库按4:1的比例分为两部分,大部分用于训练(10 * 7 * 4次试验),另一部分用于测试(10 * 7 * 1次试验)。数据归一化对算法优化有重要意义,它能弱化数据差异,使测试数据库
一、 内容概要 本资源提供了一个完整的“金属板材压弯成型”非线性仿真案例,基于ABAQUS/Explicit或Standard求解器完成。案例精确模拟了模具(凸模、凹模)金属板材之间的接触、压合过程,直至板材发生塑性弯曲成型。 模型特点:包含完整的模具-工件装配体,定义了刚体约束、通用接触(或面面接触)及摩擦系数。 材料定义:金属板材采用弹塑性材料模型,定义了完整的屈服强度、塑性应变等真实应力-应变数据。 关键结果:提供了成型过程中的板材应力(Mises应力)、塑性应变(PE)、厚度变化​ 云图,以及模具受力(接触力)曲线,完整再现了压弯工艺的力学状态。 二、 适用人群 CAE工程师/工艺工程师:从事钣金冲压、模具设计、金属成型工艺分析优化的专业人员。 高校师生:学习ABAQUS非线性分析、金属塑性成形理论,或从事相关课题研究的硕士/博士生。 结构设计工程师:需要评估钣金件可制造性(DFM)或预测成型回弹的设计人员。 三、 使用场景及目标 学习目标: 掌握在ABAQUS中设置金属塑性成形仿真的全流程,包括材料定义、复杂接触设置、边界条件载荷步。 学习如何调试和分析大变形、非线性接触问题的收敛性技巧。 理解如何通过仿真预测成型缺陷(如减薄、破裂、回弹),并理论或实验进行对比验证。 应用价值:本案例的建模方法分析思路可直接应用于汽车覆盖件、电器外壳、结构件等钣金产品的冲压工艺开发模具设计优化,减少试模成本。 四、 其他说明 资源包内包含参数化的INP文件、CAE模型文件、材料数据参考及一份简要的操作要点说明文档。INP文件便于用户直接修改关键参数(如压边力、摩擦系数、行程)进行自主研究。 建议使用ABAQUS 2022或更高版本打开。显式动力学分析(如用Explicit)对计算资源有一定要求。 本案例为教学工程参考目的提供,用户可基于此框架进行拓展,应用于V型弯曲
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值