刚开始题目没有读懂.
然而下面的node中说 论Noder采用什么方案,都是不能改变局面的。
似乎题意就是要求出当美女选择正反的概率为多少时,Noder是不能改变局面的,那么就是出正面和反面期望相等时。
那么假设美女出正面的概率为p,反面的概率为(1-p)
那么你出正面的期望收益为 p*A-(1-p)*(A+B)/2.
那么你出反面的期望收益为 (1-p)A-p(A+B)/2.
当二者相等时,p=9A+3B) / 4*(A+B);
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int read(){int ret=0;char ch=getchar();while(ch<'0'||ch>'9') ch=getchar();for(;ch>='0'&&ch<='9';ch=getchar()) ret=ret*10+ch-'0';return ret;}
int main()
{
int t=read();
while(t--)
{
long long a=read(),b=read();
long long g=__gcd(a+3*b,4*a+4*b);
printf("%lld/%lld\n",(a+3*b)/g,(4*a+4*b)/g);
}
}