三元环的个数

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/tree__water/article/details/77866903

复杂度:O(msqrt(m))
步骤:按点的度数分成两类,分别暴力
①统计每个点的度数
②入度<=sqrt(m)的分为第一类,入度>sqrt(m)的分为第二类
③对于第一类,暴力每个点,然后暴力这个点的任意两条边,再判断这两条边的另一个端点是否连接
因为m条边最多每条边遍历一次,然后暴力的点的入度<=sqrt(m),所以复杂度约为O(msqrt(m))
④对于第二类,直接暴力任意三个点,判断这三个点是否构成环,因为这一类点的个数不会超过sqrt(m)个,
所以复杂度约为O(sqrt(m)^3)=O(msqrt(m))

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+5;
int vis[N];
vector<int> q[N],low,up;
unordered_set<ll> mp;
int main()
{
    int n,m;
    while(~scanf("%d%d",&n,&m))
    {
        int lim=sqrt(1.0*m);
        mp.clear();low.clear();up.clear();
        for(int i=1;i<=n;i++)
            q[i].clear(),vis[i]=0;
        for(int i=0;i<m;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            q[u].push_back(v);
            q[v].push_back(u);
            mp.insert(1ll*u*n+v);
            mp.insert(1ll*v*n+u);
        }
        ll cnt=0;
        for(int i=1;i<=n;i++)
        {
            if(q[i].size()<=lim)
                low.push_back(i);
            else up.push_back(i);
        }
        for(int i=0;i<low.size();i++)
        {
            int u=low[i];
            vis[u]=1;
            for(int j=0;j<q[u].size();j++)
            {
                int v=q[u][j];
                if(vis[v])continue;
                for(int k=j+1;k<q[u].size();k++)
                {
                    int vv=q[u][k];
                    if(!vis[vv]&&mp.count(v*n+vv))
                        cnt++;
                }
            }
        }
        for(int i=0;i<up.size();i++)
        {
            for(int j=i+1;j<up.size();j++)
            {
                int u=up[i],v=up[j];
                if(mp.count(u*n+v)==0)continue;
                for(int k=j+1;k<up.size();k++)
                {
                    int vv=up[k];
                    if(mp.count(v*n+vv)&&mp.count(u*n+vv))
                        cnt++;
                }  
            }
        }
        printf("%lld\n",cnt);
    }
}

没有更多推荐了,返回首页