认知天性个人笔记4

第三章 学习的本质:“后刻意练习”时代的到来

3.1 频繁的集中练习只会产生短期记忆

如果把学习定义为获得新知识或新技能,以及能够在以后运用这些知识与技能,那么你获得某项知识或技能的速度只是整个学习中的一个环节。等到需要把学到的东西付诸实践的时候,你还能想得起来吗?虽说练习对于学习和记忆来说至关重要,但研究已经证明,只有当练习被分散安排在有间隔的培训里的时候,才更为有效。

间隔的练习,穿插安排其他的学习内容,加上多样化的练习,会让你把学到的东西掌握得更牢固,记忆得更长久,而且更为实用。但这些好处是有代价的:当练习有间隔、与其他内容有穿插且多样化的时候,你花费的努力也就越多。你会觉得花了更多精力,但收效却不划算。这种练习会让你感到学习收效来得更慢了,而且以前靠集中练习(补习班,训练营等)获得的快速改善以及确定感都不见了。

3.2 间隔练习使知识存储得更牢固

为什么间隔练习比集中练习更为有效呢?
大概是因为向长期记忆中存放新知识需要有一个巩固的过程。在这个过中,记忆痕迹(大脑中有关新知识的心理表征)得到加深,被赋予含义,并和已知联系起来——这个过程需要数小时,甚至数天。

3.3 穿插练习有助于长期记忆

从感觉上说,用穿插安排内容的方式学习,效果要比集中练习来得慢。教师与学生能体会到这两者的差异。他们发觉,用了穿插练习,自己对知识的掌握就要慢得多,而保持长期记忆的优势并不是那么明显。结果就造成穿插练习的方法并不受欢迎,而且很少被使用。教师们不喜欢它是因为见效太慢,学生们则认为这样做会导致混淆:他们刚刚对新资料有点儿了解,还没有熟练掌握的感觉,就要被迫转换到其他方面。但研究清楚地显示,从掌握知识长期记忆上看,穿插练习远比集中练习的效果好。

3.4 多样化练习促进知识的活学活用

通过难度较低、集中式的练习学到的东西,被编成了一个更简单、相对来说更直白的心理表征。相比之下,多样化、难度更高的练习需要耗费更多力,通过这种方式学到的东西会被大脑编成更灵活的表征,适用范围也会更广。

3.5 善用练习组合,带来成长性思维

在生活中,实际问题往往是以混乱的方式出现的:我们在不经意间就会遇到问题与机遇,没有任何顺序。由于学习必须要有实际价值,所以我们必须能辨别出“这属于哪一类问题?”,这样才能选择并应用恰当的解决方案。
有研究表明,人们可以通过穿插练习多样化练习来提高辨识能力。

记忆与辨识需要“事实性的知识”,这可以被视作比“概念性的知识”低一个层次的学问。概念性的知识需要我们理解大结构下各组成元素之间的关系,理解它们是如何作为一个整体发挥作用的。分类学需要的就是概念性知识。有人按照这个逻辑指出,练习检索事实与范例的方法不足以让人理解一般性特征,它达不到理解一般性特征所需要的智力水平。这种学习方法有助于学生辨识并区分复杂的原型(例如同一科物种的相似性),能帮助他们领悟背景差异与功能差异。学生了解这些差异,不仅是在获取简单形式的知识,还是在实现更深层次的领悟

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值