1000kv电子加速后的速度
重新看到阿贝极限关于分辨率的说明,人的裸眼分辨率为0.2mm(2×10-4m),光学显微镜的分辨率大概能提高1000倍,(可见光波长为400~700nm)大约就是2×10-7m,分辨率为波长的一半(400nm/2)。
现阶段加速电子的极限又在哪儿呢?
1nm=103pm , 1pm=103fm ,1nm=10Å。(纳米,皮米,飞米,埃)
一些物理常量:
电子质量(m0) kg | 电子电荷(e) 库仑 | 光速( c ) m/s | 普朗克常量(h) J·s | 电压(U)kv |
---|---|---|---|---|
9.10956×10-31 | 1.602176634×10-19 | 2.9979×108 | 6.6256×10-34 | 1000 |
前两天想起算一下加速电压100kv,200KV,300KV ,1000KV后电子束的波长,然后在网上查了一下,再自己看了一下。然后进入了一个误区:(e为电子电量,U为加速电压,m0为电子静止质量)
e
U
=
1
2
m
ν
2
\color {red} {eU=\frac1{2}mν^2}
eU=21mν2
引入
m
=
m
0
1
−
(
ν
c
)
2
m=\frac{m_0}{\sqrt[]{1-(\fracν{c})^2}}
m=1−(cν)2m0
算出100kv下的波长与3.7pm相差较大,后来再重新看一下相对论介绍,才发现犯了大错。
相对论只承认质能方程,E=mc2 , 也就是⊿E=⊿m•c2,动能是经典力学里的(不要在相对论里谈经典力学的动能)。
所以:
e
U
=
(
m
−
m
0
)
c
2
\mathbf \color{lime} {eU=(m-m_0)c^2}
eU=(m−m0)c2
令ν=c•sinθ (θ∈[0,π/2)) ,A=eU/(m0c2),
就可以得到secθ=1+A,θ=arccos(1/(1+A))。
得到θ值,其它值都可以轻松算出来:
m=m0secθ , ν=c•sinθ
根据德布罗意物质波公式,波长λ=h/(mν )=h/(m0c)•cotθ ,
当然也可以直接写成波长与加速电压的关系:
c
o
t
θ
=
1
t
a
n
θ
=
1
s
e
c
2
θ
−
1
=
1
A
2
+
2
A
cotθ=\frac {1}{tanθ}=\frac 1{\sqrt[]{sec^2θ-1}}=\frac 1{\sqrt[]{A^2+2A}}
cotθ=tanθ1=sec2θ−11=A2+2A1
λ
=
h
m
0
c
⋅
1
A
2
+
2
A
=
h
c
e
2
U
2
+
2
e
U
⋅
m
0
c
2
λ=\frac h{m_0c}\cdot\frac 1{\sqrt[]{A^2+2A}}=\frac {hc}{\sqrt[]{e^2U^2+2eU\cdot m_0c^2}}
λ=m0ch⋅A2+2A1=e2U2+2eU⋅m0c2hc
然后把所有数据作成excel表格:表格
按照经典力学的计算,加速电压256kv就已经恰好超光速,1000kv电子束的速度接近2倍光速。
看一下波长公式:波长λ=h/(m0c)•cotθ,h/(m0c)为常数,变化的是θ的余切值,
(θ∈[0,π/2)),θ无限趋近于π/2时,波长无限趋近于零。
一些电子显微镜300kv的峰值电压已经很常见,1000kv的透射电子显微镜早在1970年代就有投入使用并持续至今的。如果仅就电子束的波长而言,100kv加速电压下,波长就在3.7pm了,而波长的一半只有1.85pm,而现在透射电子显微镜的分辨率,最高为50pm~70pm,可以参考这几家公司美国thermofisher(https://www.thermofisher.com/us/en/home/electron-microscopy/products/transmission-electron-microscopes/spectra-ultra-tem.html#media),
日本电子(https://www.jeol.co.jp/products/detail/JEM-ARM200F_NEOARM.html),
日本日立(https://www.thermofisher.com/us/en/home/electron-microscopy/products/transmission-electron-microscopes/spectra-ultra-tem.html#media) , 就分辨率而言,并非加速电压越大,分辨率就越高,实际的分辨率提升跟电子波长并没有太大关系,比如说加速电压15kv时,波长在9.7pm,半波长为4.85pm.
虽然我们现有的飞行器离光速还相当遥远,但一些微观粒子在加速后却实实在在极其接近光速,限于相当论的规则下,无法突破光速。