不定期备考小tips[常微][0] #20210524


本专栏主要作个人笔记,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

常微(Strogatz书)

参考书籍:
1994年版,资源自寻

一些描述稳定性的词汇

假设 x ⃗ 0 = 0 ⃗ \vec x_0 = \vec 0 x 0=0 是待考察的点。

  1. 吸引的(attracting)
    t → ∞ t\to\infty t时,一切 0 ⃗ \vec 0 0 附近的点都演化到 0 ⃗ \vec 0 0 处。(特别地,如果不仅仅是“附近”,而是所有点,就称为全局吸引的(globally attracting)。
  2. 李雅普诺夫稳定(Liapunov stable)
    任意 0 ⃗ \vec 0 0 附近小球 B ϵ ( 0 ) B_\epsilon(0) Bϵ(0),都可以找到相应的 0 ⃗ \vec 0 0 附近小球 B δ ( 0 ) B_\delta(0) Bδ(0) δ \delta δ当然和 ϵ \epsilon ϵ有关),使得 B δ ( 0 ) B_\delta(0) Bδ(0)当中起始的轨迹在演化中都不超出小球 B ϵ ( 0 ) B_\epsilon(0) Bϵ(0)
  3. 两者的区别和联系
    李雅普诺夫稳定但不吸引称为中性稳定。(neutrally stable),两者都满足称为渐近稳定/稳定(asymptotically stable/stable),两者都不满足称为不稳定(unstable)
  4. 两者互不蕴含。反例:
  • 圆环上(即 x = 0 x=0 x=0 x = 2 π x=2\pi x=2π看作相同的点), x ˙ = 1 − c o s x \dot x = 1-cosx x˙=1cosx决定的系统。原点处吸引但不李雅普诺夫稳定。
    思考:如果需要构造二维平面上类似于上述性质的系统,怎么办?一种可能的做法是直接令二维平面上一个环形处的向量场 x ⃗ \vec x x 大小由上面决定,而方向由圆环的切向决定。其它地方就连续作延拓。
  • 每一点都有 x ⃗ ˙ = 0 \dot{ \vec x} = 0 x ˙=0决定的系统。任意点处李雅普诺夫稳定但不吸引。
  • 二维平面上所有点都趋向于 x x x轴的系统。(一 向 箔

退化结点(degenerate node)

二维系统,平衡点附近矩阵的Jordan标准形如 ( λ 1 0 λ ) , λ ≠ 0 \left(\begin{matrix}\lambda & 1 \\ 0 & \lambda\end{matrix}\right),\lambda \neq 0 (λ01λ),λ=0,则是退化结点。(如果

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值