数字信号处理学习笔记[2] 奇异函数练习 重抽样 恢复连续信号 假频

这篇博客介绍了离散信号处理中的奇异函数练习,包括狄拉克函数的筛选性质证明和傅里叶变换的一一对应关系。讨论了离散信号的重抽样定理,解释了重抽样过程及其在工程应用中的局限性,并探讨了由离散信号恢复连续信号的问题。此外,还提到了抽样与假频的现象以及如何处理假频问题。
摘要由CSDN通过智能技术生成

2 离散信号和抽样定理

奇异函数练习

  1. Q: 直接根据狄拉克函数的定义证明筛选性质。
    A: 提示: ∫ − ∞ + ∞ δ ( x ) f ( x ) d x = ∫ − ∞ + ∞ δ ( x ) f ( 0 ) d x ( 因 为 其 它 点 δ ( x ) = 0 ) \int_{-\infty}^{+\infty}\delta(x)f(x)dx=\int_{-\infty}^{+\infty}\delta(x)f(0)dx(因为其它点\delta(x)=0) +δ(x)f(x)dx=+δ(x)f(0)dx(δ(x)=0)
    = f ( 0 ) ∫ − ∞ + ∞ δ ( x ) d x = f ( 0 ) =f(0)\int_{-\infty}^{+\infty}\delta(x)dx=f(0) =f(0)+δ(x)dx=f(0)
  2. Q: 证明傅里叶展开的一一对应关系。
    A: 提示:在第0期已经证明过一侧,即:
    c m = 1 T ∫ t 0 t 0 + T x ( t ) e − i 2 π m f 0 t d t c_m =\frac 1T \int_{t_0}^{t_0+T}x(t)e^{-i2\pi mf_0 t}dt cm=T1t0t0+Tx(t)ei2πmf0tdt (1)
    x ( t ) = ∑ d n e i 2 π n f 0 t x(t)=\sum d_ne^{i2\pi n f_0t} x(t)=dnei2πnf0t (2)
    中把(2)代入(1)右侧,得到 d n = c n , ∀ n d_n=c_n,\forall n dn=cn,n.
    现在只要证明另一侧,即
    c n = 1 T ∫ t 0 t 0 + T y ( t ) e − i 2 π n f 0 t d t c_n =\frac 1T \int_{t_0}^{t_0+T}y(t)e^{-i2\pi nf_0 t}dt cn=T1t0t0+Ty(t)ei2πnf0tdt (1)
    x ( s ) = ∑ c n e i 2 π n f 0 s x(s)=\sum c_ne^{i2\pi n f_0s} x(s)=cnei2πnf0s (2)
    中把(1)代入(2)右侧,
    x ( s ) = ∑ 1 T ∫ t 0 t 0 + T y ( t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值