客户贷款逾期预测[3]-xgboost和lightgbm

这篇博客探讨了如何运用xgboost和lightgbm模型预测客户贷款是否逾期,通过介绍任务背景、实现过程以及遇到的numpy DeprecationWarning问题,展示了模型应用。同时指出对模型参数调整和评分指标选择的理解不足,表示未来需要深入学习相关原理。
摘要由CSDN通过智能技术生成

任务

      根据客户贷款数据预测客户是否会逾期,1表示会,0表示不会。

实现

# -*- coding: utf-8 -*-
"""
Created on Thu Nov 15 13:02:11 2018

@author: keepi
"""

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import f1_score
import xgboost as xgb
import warnings
warnings.filterwarnings('ignore')
pd.set_option('display.max_row',1000)

#导入数据
data = pd.read_csv('data.csv',encoding='gb18030')
print("data.shape:",data.shape)
#数据处理
miss_rate = data.isnull().sum() / len(data)
print("缺失率:",miss_rate.sort_values(ascending=False))
X_num = data.select_dtypes('number').copy()
X_num.fillna(X_num.mean(),inplace=True)
print("数值型特征的shape:",X_num.shape)
print(X_num.columns)
X_num.drop(['Unnamed: 0','status'],axi
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值