机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)
这是“银行客户交易行为预测”的第三篇文章,我们将建立LightGBM模型预测客户交易行为。结果的交叉验证分数显示,该模型预测效果比较理想。
准备工作
加载包
import gc
import os
import logging
import datetime
import warnings
import numpy as np
import pandas as pd
import seaborn as sns
import lightgbm as lgb
from tqdm import tqdm_notebook
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.metrics import roc_auc_score, roc_curve
from sklearn.model_selection import StratifiedKFold
warnings.filterwarnings('ignore')
加载数据
IS_LOCAL = False
if(IS_LOCAL):
PATH="e:/kaggle_exercises/santander/input/Santander/"
else:
PATH="e:/kaggle_exercises/santander/input/"
os.listdir(PATH)