银行客户交易行为预测:LightGBM模型

本文是银行客户交易行为预测系列的第三篇,通过使用LightGBM模型进行预测。经过数据探索和处理,发现数据集中没有缺失值且目标变量不平衡。经过设置超参数和交叉验证,模型预测效果良好,交叉验证分数达到0.90022。
摘要由CSDN通过智能技术生成

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)

这是“银行客户交易行为预测”的第三篇文章,我们将建立LightGBM模型预测客户交易行为。结果的交叉验证分数显示,该模型预测效果比较理想。

准备工作

加载包

import gc
import os
import logging
import datetime
import warnings
import numpy as np
import pandas as pd
import seaborn as sns
import lightgbm as lgb
from tqdm import tqdm_notebook
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error
from sklearn.metrics import roc_auc_score, roc_curve
from sklearn.model_selection import StratifiedKFold
warnings.filterwarnings('ignore')

加载数据

IS_LOCAL = False
if(IS_LOCAL):
    PATH="e:/kaggle_exercises/santander/input/Santander/"
else:
    PATH="e:/kaggle_exercises/santander/input/"
os.listdir(PATH)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值