1.标量、向量、矩阵、张量的概念及基本python运算
https://cloud.tencent.com/developer/article/1165913
这篇文章部分代码中变量的类型有问题,整体无伤大雅。
2.向量点乘(内积)和叉乘(外积、向量积)概念及几何意义解读
https://blog.csdn.net/kebu12345678/article/details/80724336
这篇文章分割线后面的内容可以跳过
3.矩阵和数组的区别
https://www.cnblogs.com/AlvinSui/p/8412721.html
4.不同的“维度”:
向量的维度指向量的长度,即列数。
数组的维度是指数组的深度,看最左边有几个括弧。 比如[[[1, 2], [3, 4]], [[5, 6], [7, 8]]]就是3维数组。矩阵在形式上是2维数组,但两者类型不同,所包含的运算规则也不同。
矩阵的维度是指矩阵的行数。
参考链接:
详解 n 维向量、n 维数组 和 矩阵的维度:https://blog.csdn.net/qq_41800366/article/details/86605575
史上最生成形象的理解矩阵的维度和乘法:https://blog.csdn.net/tianrui007/article/details/79632881
5.简单来讲,张量可以理解成多维数组。
第零阶张量 (r = 0) 为标量 (Scalar),第一阶张量 (r = 1) 为向量 (Vector), 第二阶张量 (r = 2) 则成为矩阵 (Matrix)。