sklearn模块

背景:python中有一个sklearn模块,全称scikit-learn。是一个集成了许多机器学习算法的第三方模块,包括回归(Regression)、分类(Classfication)、聚类(Clustering)、降维(Dimensionality Reduction)等方法。

算法选择流程图:

不同的评估器适合于不同类型的数据和不同的问题。以下是skl官方给出的粗略指引:

原图链接:https://scikit-learn.org/stable/tutorial/machine_learning_map/

单击原图表中的任何评估器可以查看其文档。

skl通用学习模式:

`sklearn`(Scikit-Learn)是Python中最受欢迎的数据分析和机器学习库之一。它提供了一个易于使用的API,覆盖了各种统计模型、聚类算法、降维技术以及数据预处理等多个机器学习任务。Sklearn的设计理念基于三个核心原则:简单直接、集成以及可扩展性。 **功能涵盖**: - **分类**:支持多种分类算法,比如决策树、随机森林、SVM(支持向量机)、K近邻等。 - **回归**:线性回归、岭回归、Lasso回归、弹性网络回归等。 - **聚类**:K-means、层次聚类、DBSCAN等。 - **模型选择和评估**:交叉验证、网格搜索、评价指标(准确率、召回率、F1分数等)。 - **数据预处理**:标准化、归一化、缺失值处理、特征提取等工具。 - **降维**:主成分分析(PCA)、因子分析等。 - **监督学习和无监督学习**:集成了许多经典的监督和非监督学习算法。 **优点**: - 完整的功能集,能满足大部分基础到高级的学习任务。 - 易于理解和使用,文档详细,有大量的示例和教程。 - 高度模块化,允许用户轻松定制和扩展。 **常见用法**: ```python from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error # 加载数据 X, y = load_data() X_train, X_test, y_train, y_test = train_test_split(X, y) # 训练模型 model = LinearRegression() model.fit(X_train, y_train) # 预测并评估 y_pred = model.predict(X_test) mse = mean_squared_error(y_test, y_pred) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值