矩估计与最大似然估计

矩估计法

一阶原点估计 :原理是针对矩阵的每一个点  求每一个点都和原点相减的和,然后在除以样本的总量 本质是上求样本的均值

二阶中心矩:(均值) 每个样本减去均值的平方和除以求方差 

最大似然估计法:

最大似然参数估计求一个可能的θ值(既是在所有可能的θ的取值中,寻找一个值便是的这个采样的“可能性”最大化)

举例子:假设现在有两个箱子,一个箱子里面有黑棋子90,白棋子10,;另一个箱子白棋子90个,黑棋子10个,现在问随机从其中抽取一个白棋子,问这个棋子是来自于哪个箱子的呢? 属于统计推断  不属于逻辑推断

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值