例1
知识:
1.凑微分(第一类换元积分法)
2.辛钦大数定律:
(1)条件,独立同分布,期望存在且相同
(2)结论,均值依概率收敛于期望
3.矩估计:求单个参数,列均值就好,求两个参数,可结合方差计算公式,求三个及以上参数不常见。
4.最大似然估计:
(1)设一组样本
x
1
,
x
2
.
.
.
x
n
x_1,x_2...x_n
x1,x2...xn
(2)写似然函数(算概率)
(3)对似然函数取对数(便于求导数找最值)
(4)求导找零点,零点不存在(单调)则找端点值
答案:(1) X ‾ \overline X X(2) 2 n ∑ i = 1 n 1 X i \frac{2n}{\sum_{i=1}^{n}{\frac{1}{X_i}} } ∑i=1nXi12n
例2
知识:
1.密度函数的规范性,积分和为 1
2.最大似然估计:
(1)设一组样本
x
1
,
x
2
.
.
.
x
n
x_1,x_2...x_n
x1,x2...xn(已经给出就不用设)
(2)写似然函数(算概率)
(3)对似然函数取对数(便于求导数找最值)
(4)求导找零点,零点不存在(单调)则找端点值
答案: 5/8
例3
知识:
1.无偏估计:
答案: (1)
2
X
‾
2\overline X
2X (2)是无偏估计