矩估计和最大似然估计关系

1、矩估计

理论根源是辛钦大数定律,样本之间是独立同分布,当数据样本量很大的时候,样本观测值的平均值和总体的数学期望是在一个极小的误差范围内。

矩估计法, 也称“矩法估计”,就是利用样本矩来估计总体中相应的参数。首先推导涉及感兴趣的参数的总体矩

所考虑的随机变量的幂的期望值)的方程。然后取出一个样本并从这个样本估计总体矩。接着使用样本矩取代

(未知的)总体矩,解出感兴趣的参数。从而得到那些参数的估计

用样本矩作为相应的总体矩估计来求出估计量的方法.其思想是:如果总体中有 K个未知参数,可以用前 K阶样本矩估计相应的前k阶总体矩,然后利用未知参数与总体矩的函数关系,求出参数的估计量。

对于一个已知的分布,主要是参数还不知道,因此就可以通过建立一个等式关系,求出参数的估计值!


2、最大似然估计

在已知试验结果(即是样本)的情况下,用来估计满足这些样本分布的参数,把可能性最大的那个参数clip_image002作为真实clip_image004的参数估计。需要知道样本和样本服从的分布,但不知道

分布的参数,同时最大似然估计的前提条件就是要求样本之间是相互独立的。最大似然估计的思想:估计的最合理的参数应该是已经发生的这组样本同时发生的概率是最大,因此

最大似然法就是先建立似然函数(样本发生概率的连乘式),然后求这样函数的最大值(极值),对各个估计参数进行求偏导。这里有个小技巧对于有些似然函数很难求其最值,

观察到这个似然函数的结构,其实连乘式,故可以使用个log函数进行映射,变成连加式,而又不影响其极值点!


3、矩估计和最大似然估计关系

并不是所有的分布,用矩估计和极大似然估计得到的参数值都是一样的,一般对于单参数的指数分布族,poisson分布,指数分布,bernoulli分布,矩估计和极大似然是相等的,因为1阶矩就是充分完备的统计量。两参数的指数分布族就要复杂一点了,正态分布的话,均值的估计是一样的,方差的极大似然估计分母为n,矩估计一般指的是无偏化修正之后的S^2,分母为n-1。一般极大似然估计要优于矩估计!

4、参考


A:https://www.zhihu.com/question/23340486

B:https://www.zhihu.com/question/23340486/answer/47136999

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值