POJ 2480 Longge's problem 欧拉函数

题意: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N.

题解:

公式:f(N)=∑x*φ(N/x),x | N (x是N的约数)
因为在1···N中,gcd(i,N) = x, 的个数的等于φ(N / x)

另外还可以利用函数的积性:

对于正整数n的一个函数 f(n),当中f(1)=1且当a,b互质,f(ab)=f(a)f(b),在数论上就称它为积性函数。若某函数f(n)符合f(1)=1,且就算a,b不互质,f(ab)=f(a)f(b),则称它为完全积性函数。


不妨令M, N互素
f(M) = ∑d1 * φ(M / d1), d1 | M
f(N) = ∑d2 * φ(N / d2), d2 | N

f(MN) = ∑d * φ(MN / d), d | MN
因为M, N互素,则每个d都可以唯一分解为M中的因子d1, 和N中的因子d2
即d = d1 * d2, d1 | M, d2 | N, d1与d2互素
则d * φ(MN / d) = d1 * d2 * φ(M / d1) * φ(N / d2)
f(MN)中的项与f(M) * f(N)中的项一一对应

解法一:47MS
#include<cstdio>
#include<cstring>
using namespace std;

#define MAXN 200000
#define lint __int64
struct Factor { lint b, e; };
Factor f[MAXN]; lint fnum;
lint a[MAXN], p[MAXN], pn;
lint n, ret;

void Prime()
{
    lint i, j; pn = 0;
    memset(a,0,sizeof(a));
    for ( i = 2; i < MAXN; i++ )
    {
        if ( a[i] == 0 ) p[pn++] = i;
        for ( j = 0; j < pn && i*p[j] < MAXN && (p[j]<=a[i] || !a[i]); j++ )
            a[i*p[j]] = p[j];
    }
}

lint Euler ( lint n )
{
    lint ret = n;
    for ( int i = 0; p[i] * p[i] <= n; i++ )
    {
        if ( n % p[i] == 0 )
        {
            ret = ret - ret / p[i];
            while ( n % p[i] == 0 ) n /= p[i];
        }
    }
    if ( n > 1 )
        ret = ret - ret / n;
    return ret;
}

void split ( lint n )
{
    fnum = 0;
    for ( int i = 0; p[i] * p[i] <= n; i++ )
    {
        if ( n % p[i] ) continue;
        f[fnum].b = p[i]; f[fnum].e = 0;
        while ( n % p[i] == 0 )
        {
            f[fnum].e++;
            n /= p[i];
        }
        fnum++;
    }
    if ( n > 1 )
        f[fnum].b = n, f[fnum++].e = 1;

}


void DFS ( lint val, int index ) //求n的每一个约数,然后利用欧拉函数
{
    if ( index == fnum )
    {
        ret += Euler(n/val) * val;   //Euler(n/val)的值表示1-n中gcd(n,i)= val的个数
        return;
    }
    for ( lint i = 0, tmp = 1; i <= f[index].e; i++, tmp *= f[index].b )
        DFS ( val*tmp, index+1 );
}

int main()
{
    Prime();
    while ( scanf("%I64d",&n) != EOF )
    {
        split ( n );
        ret = 0;
        DFS ( 1, 0 );
        printf("%I64d\n",ret);
    }
}


解法二:利用积性16ms
#include<cstdio>
#include<cstring>
using namespace std;

#define MAXN 200000
#define lint __int64
struct Factor { lint b, e, mult; };
Factor f[MAXN]; lint fnum;
lint a[MAXN], p[MAXN], pn;

void Prime()
{
    lint i, j; pn = 0;
    memset(a,0,sizeof(a));
    for ( i = 2; i < MAXN; i++ )
    {
        if ( a[i] == 0 ) p[pn++] = i;
        for ( j = 0; j < pn && i*p[j] < MAXN && (p[j]<=a[i] || !a[i]); j++ )
            a[i*p[j]] = p[j];
    }
}

lint Euler ( lint n )
{
    lint ret = n;
    for ( int i = 0; p[i] * p[i] <= n; i++ )
    {
        if ( n % p[i] == 0 )
        {
            ret = ret - ret / p[i];
            while ( n % p[i] == 0 ) n /= p[i];
        }
    }
    if ( n > 1 )
        ret = ret - ret / n;
    return ret;
}

void split ( lint n )
{
    fnum = 0;
    for ( int i = 0; p[i] * p[i] <= n; i++ )
    {
        if ( n % p[i] ) continue;
        f[fnum].b = p[i]; f[fnum].e = 0;
        f[fnum].mult = 1;
        while ( n % p[i] == 0 )
        {
            f[fnum].e++;
            f[fnum].mult *= p[i];
            n /= p[i];
        }
        fnum++;
    }
    if ( n > 1 )
        f[fnum].b = f[fnum].mult = n, f[fnum++].e = 1;

}

int main()
{
    Prime(); lint n;
    while ( scanf("%I64d",&n) != EOF )
    {
        split ( n );
        lint ret = 1, tmp, sum;
        for ( int i = 0; i < fnum; i++ )
        {
            tmp = 1, sum = Euler(f[i].mult); //所有与f[i].mult互素的数先加起来
            for ( int j = 1; j <= f[i].e; j++ )
            {
                tmp *= f[i].b;
                sum += Euler(f[i].mult/tmp) * tmp;
            }
            ret *= sum;
        }
        printf("%I64d\n",ret);
    }
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值