Zachary的旅途

尽管我走的很慢,但我从未停止脚步。

poj 2480

设函数g(n) = gcd(i,n) (1<=i<=n),由积性函数的定义,g(n)=g(m1)*g(m2) (n=m1*m2 且 (m1, m2)= 1),所以g是积性函数。由具体数学上的结论,积性函数的和也是积性的。所以f(n) = ∑gcd(i, n)也是积性函数。由初等数论中的定理,如果f(n)是不恒为0的数论函数,n>1时 n=p1^a1*p2^a2*...*ps^as,那么f(n)是积性函数的充要条件是f(1)=1,及f(n) = f(p1^a1)*f(p2^a2)*...f(pr^ar)。所以只要求f(pi^ai)就好,如果d是n的一个约数,那么1<=i<=n中gcd(i,n) = d的个数是phi(n/d),即n/d的欧拉函数

f(pi^ai) =  Φ(pi^ai)+pi*Φ(pi^(ai-1))+pi^2*Φ(pi^(ai-2))+...+pi^(ai-1)* Φ(pi)+ pi^ai *Φ(1)

     = pi^(ai-1)*(pi-1) + pi*pi^(ai-2)*(pi-1)....+pi^ai

     =  pi^ai*(1+ai*(1-1/pi))

f(n) = p1^a1*p2^a2...*pr^ar*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*...

       =  n*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;

typedef __int64 lint;


int main()
{
    lint n;
    while (scanf("%I64d", &n) != EOF) {
        lint i, sqr, p, a, ans;
        ans = n;
        sqr = floor(sqrt(n*1.0));
        for (i = 2; i <= sqr; ++i) {
            if (n%i == 0) {
                a = 0;
                p = i;
                while (n%p == 0) {
                    a++;
                    n /= p;
                }
                ans = ans + ans*a*(p-1)/p;
            }
        }
        if (n!=1) {
            ans = ans + ans*(n-1)/n;
        }
        printf("%I64d\n", ans);
    }
    return 0;
}


阅读更多
个人分类: 数学
上一篇hdoj 1695 GCD
下一篇Rational Rose 2007 &amp; Rational Rose 2003 下载及破解方法和汉化文件下载
想对作者说点什么? 我来说一句

epson 2480

2017年08月18日 20MB 下载

兄弟2480打印机驱动

2017年03月03日 5.46MB 下载

兄弟2480\xp打印机向导驱动程序

2012年05月03日 5.61MB 下载

没有更多推荐了,返回首页

关闭
关闭