YOLOv10改进 | 独家创新- 注意力篇 | YOLOv10引入ECA和Softmax Attention结合之SECA注意力和C2f_SECA(全网独家创新)

102 篇文章 64 订阅 ¥89.90 ¥99.00

1. SECA介绍

          SECA(Scale-wise Attention)和ECA(Enhanced Channel Attention)都是用于增强神经网络在图像特征提取过程中的性能的注意力机制。它们在如何整合空间信息和通道信息上有所不同。

          SECA(Scale-wise Attention)

         SECA注意力机制结合了两种注意力机制:ECA和Softmax Attention。其主要优势在于以下几点:

         (1). 多尺度信息融合:SECA首先使用了ECA模块,通过全局平均池化获取特征图的全局空间信息,然后利用卷积操作增强了特征图的不同尺度信息,使得模型可以更有效地捕获不同尺度下的特征。

          (2). Softmax Attention:SECA进一步引入了Softmax Attention机制,通过学习得到的权重来动态调整特征图中每个位置的重要性,从而更加精确地聚焦于图像中不同区域的关键特征。

          (3). 全局特征加权:SECA在进行Softmax Attention时,利用了全连接层来学习特征图中每个位置的权重,这种全局特征加权的方式能够有效地提升模型在复杂场景下的表现。

          (4). 适应性强:由于SECA同时考虑了全局和局部的特征信息,并且通过学习得到的权

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值