前言
进行 FFT, IFFT 的运算过程思考记录
蝶形运算
-
建议用信号流图表示,有点像甲骨文的五[2]
-
西电 ppt 将其封装为了 “X” 形的蝶形运算,个人感觉没 “五” 形的信号流图好记
- 时域抽取蝶形运算[3]
- 时域抽取蝶形运算[3]
- 时域抽取蝶形运算[3]
旋转因子指数取值
二进制对应 [1]
- 时域抽取的 DIT - FFT, 其频域部分顺序排列,对应的时域部分正常排列,且时域与频域对应的序列号的二进制数字相反
- 例如,X(1) 的 1 对应 2 进制是
000
1
(
2
)
0001_{(2)}
0001(2),倒过来是
100
0
(
2
)
1000_{(2)}
1000(2), 对应位置是
8
(
10
)
8_{(10)}
8(10),即 x(8)
- 例如,X(1) 的 1 对应 2 进制是
000
1
(
2
)
0001_{(2)}
0001(2),倒过来是
100
0
(
2
)
1000_{(2)}
1000(2), 对应位置是
8
(
10
)
8_{(10)}
8(10),即 x(8)
总结
参考文献
[1] Av927006607,P19
[2] https://www.guoxuedashi.net/zixing/yanbian/1316xz/
[3] https://blog.csdn.net/qq_42604176/article/details/105800929