论文阅读笔记:Learning Attribute-to-Feature Mappings for Cold-Start Recommendations

论文:Learning Attribute-to-Feature Mappings for Cold-Start Recommendations / 通过学习属性到特征的映射进行冷启动推荐
作者:Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle and Lars Schmidt-Thieme
发表刊物:ICDM
发表年度:2010
下载地址:https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.187.5933&rep=rep1&type=pdf

这篇文章提出的BPR-MapLin-Map算法是做冷启动推荐时常用的对比算法。

作者首先指出,在做冷启动推荐时,由于没有关于用户或产品的历史交互数据可用,所以需要引入用户或产品的辅助信息,比如用户的性别、年龄、地理位置、收入,或产品的流派、类别、关键词等信息。传统的矩阵分解模型在做预测时依赖于学习到的用户隐因子和产品隐因子的点积,但是这种模型只能处理有历史交互数据的用户或产品,对于新用户或新产品,则无能为力,而且许多依赖于用户或产品历史交互数据和内容信息的混合推荐方法也不能获得很好的冷启动推荐性能。基于以上分析,作者设计了一种基于矩阵分解模型的框架,该框架能够基于热启动产品的历史交互数据以及所有热启动产品和冷启动产品的辅助信息进行冷启动产品推荐。

作者提出的框架包括两部分:矩阵分解模型和映射函数,矩阵分解模型用于从产品的历史交互数据中学习出用户和产品的隐特征表示,映射函数用于学习从产品属性到产品隐特征的映射。

框架的示意图为:

 

 作者进一步介绍了用到的数据:

 映射函数的训练流程为:

作者用到的 矩阵分解模型是BPRMF模型。作者进一步提出了该框架的3种实现,分别是KNN-Map、LinMap和BPR-Map。

其中KNN-Map的定义为:

Lin-Map的定义为:

 BPR-Map即映射函数和矩阵分解联合优化。

作者在MyMediaLite中开源了这几个方法,地址为:https://github.com/zenogantner/mymedialite

此外我在Github上找到一个代码:https://github.com/fenixlin/atfm_bpr

©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页