推荐系统
文章平均质量分 53
烟雨风渡
研究生
展开
-
Co Attention注意力机制实现
“Hierarchical Question-Image Co-Attention for Visual Question Answering”中的图像和文本间的Co Attention协同注意力实现参考:https://github.com/SkyOL5/VQA-CoAttention/blob/master/coatt/coattention_net.pyhttps://github.com/Zhangtd/Models-reproducing/blob/master/NIPS2016/se原创 2021-05-26 15:12:52 · 22201 阅读 · 5 评论 -
博文翻译:Tackling the Cold Start Problem in Recommender Systems
博文地址:Tackling the Cold Start Problem in Recommender Systems题目:Tackling the Cold Start Problem in Recommender Systems / 解决推荐系统中的冷启动问题作者:Kojin Oshiba当我在Wish进行机器学习实习时,我要解决推荐系统中的一个常见问题“冷启动推荐”。冷启动通常发生在新用户或新产品出现在电子商务平台时。传统的推荐方法如CF假定每个用户或产品有一些评分,因此我们可以推断.翻译 2020-10-21 21:37:39 · 539 阅读 · 0 评论 -
常用的Top-N产品推荐评估指标
Top-N产品推荐与传统的评分预测相比,更符合实际的业务需求,在对推荐算法产生的Top-K推荐列表进行评估时,有一些常用的指标,如Hit_Rate@k、Precision@k、Recall@k、Map@k、NDCG@k和MRR@k,下面基于Python实现这6种评估指标。主要参考了https://github.com/wubinzzu/NeuRec/blob/master/evaluator/backend/python/metric.py代码和示例如下:import numpy as np.原创 2020-10-19 20:14:07 · 8786 阅读 · 0 评论 -
论文阅读笔记:Low-rank Linear Cold-Start Recommendation from Social Data
论文:Low-rank Linear Cold-Start Recommendation from Social Data / 利用社交数据进行低秩线性冷启动推荐作者:Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, Lexing Xie,Darius Braziunas发表刊物:AAAI发表年度:2017下载地址:http://cm.cecs.anu.edu.au/documents/loco-aaai17-final.pdf1、背景.原创 2020-10-16 11:21:46 · 428 阅读 · 0 评论 -
论文阅读笔记:Social Collaborative Filtering for Cold-start Recommendations
论文:Social Collaborative Filtering for Cold-start Recommendations / 用户冷启动推荐的社会化协同过滤作者:Suvash Sedhain,Scott Sanner,Darius Braziunas,Lexing Xie,Jordan Christensen发表刊物:RecSys发表年度:2014下载地址:http://users.cecs.anu.edu.au/~ssanner/Papers/recsys14.pdf这篇文章研...原创 2020-10-15 11:44:26 · 572 阅读 · 2 评论 -
论文阅读笔记:Learning Attribute-to-Feature Mappings for Cold-Start Recommendations
论文:Learning Attribute-to-Feature Mappings for Cold-Start Recommendations / 通过学习属性到特征的映射进行冷启动推荐作者:Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, Steffen Rendle and Lars Schmidt-Thieme发表刊物:ICDM发表年度:2010下载地址:https://citeseerx.ist.psu.edu/viewdoc/do原创 2020-10-14 15:07:04 · 437 阅读 · 0 评论 -
论文阅读笔记:Relational Learning via Collective Matrix Factorization
论文:Relational Learning via Collective Matrix Factorization / 通过协同矩阵分解进行关系学习作者:Ajit P. Singh,Geoffrey J. Gordon发表刊物:KDD发表年度:2008下载地址:https://doi.org/10.1145/1401890.1401969CMF模型是评分预测、冷启动推荐等推荐系统相关研究中经常对比的一个经典基线,其基本思想是在做关系学习任务时,可以利用与待预测的关系相关的其他关系数据来改进预.原创 2020-10-13 11:10:21 · 1760 阅读 · 0 评论 -
推荐系统冷启动问题
推荐系统冷启动问题是指:如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用推荐系统,即在缺乏有价值数据时,如何进行有效的推荐的问题。...原创 2020-10-08 11:28:17 · 1200 阅读 · 0 评论 -
经典的冷启动推荐算法 / Cold-start Recommendation Baselines
持续更新...原创 2020-09-25 11:14:24 · 1128 阅读 · 0 评论 -
常用的冷启动推荐数据集 / Cold-Start Recommendation Dataset
持续更新...原创 2020-09-25 11:10:05 · 839 阅读 · 1 评论 -
冷启动推荐的一般性建模流程
冷启动推荐旨在解决当系统中出现新用户或新产品时如何进行推荐的问题,相比于热启动用户或产品,冷启动用户或产品缺少用户-产品交互数据,因此用传统的热启动推荐方法往往不能解决这类问题。当前的冷启动推荐建模的主要思路是:通过学习映射函数将用户或产品的辅助信息表示转换为协同过滤表示。冷启动算法建模的示意图如下:注:图片取自Recommendation for New Users and New Items via Randomized Training and Mixture-of-Experts Trans原创 2020-09-23 15:14:01 · 1151 阅读 · 0 评论 -
论文阅读笔记:From Zero-Shot Learning to Cold-Start Recommendation
论文:From Zero-Shot Learning to Cold-Start Recommendation / 从零样本学习到冷启动推荐作者:Jingjing Li, Mengmeng Jing, Ke Lu, Lei Zhu, Yang Yang, Zi Huang发表刊物:AAAI发表年度:2019下载地址:https://arxiv.org/abs/1906.08511Abstract零样本学习和冷启动推荐分别是计算机视觉和推荐系统中具有挑战性的研究问题,它们一般来各自的社区中被独原创 2020-08-17 19:26:28 · 1214 阅读 · 0 评论 -
python对列表元素排序并返回元素索引序列
在信息检索或top-n推荐中,我们会为用户推荐一个有序推荐列表,这里的“有序”体现在列表中前面的产品相比于列表后面的产品被算法预测为更容易被用户选择,这要求我们按每个产品出现的概率对产品进行排序。可以参考以下示例:# 按列表a中元素的值进行排序,并返回元素对应索引序列a = [1, 3, 4, 5, 2, 7, 9]print('a:', a)sorted_id = sorted(range(len(a)), key=lambda k: a[k], reverse=True)print('元素原创 2020-08-11 20:33:10 · 43670 阅读 · 7 评论 -
python批量计算cosine distance
我们在做推荐或者信息检索任务时经常需要比较项目嵌入和项目嵌入之间或者用户嵌入和项目嵌入之间相似度,进而进行推荐。余弦相似度的计算公式如下:余弦相似度cosine similarity和余弦距离cosine distance是相似度度量中常用的两个指标,我们可以用sklearn.metrics.pairwise下的cosine_similarity和paired_distances函数分别计算两个向量之间的余弦相似度和余弦距离,效果如下:import numpy as npfrom sklea原创 2020-08-11 19:35:04 · 16515 阅读 · 1 评论 -
python计算mAP
mAP(mean Average Precision)是信息检索和推荐系统领域评估算法性能的重要指标。If you have an algorithm that is returning a ranked ordering of items, each item is either hit or miss (like relevant vs. irrelevant search results) and items further down in the list are less likely to原创 2020-08-07 19:44:22 · 6244 阅读 · 0 评论 -
文章分享:Learning from History and Present
        分享一篇发表在KDD 2018上面的文章:Learning from History and Present: Next-item Recommendation原创 2018-12-14 09:40:56 · 1110 阅读 · 4 评论 -
《Deep Learning based Recommender System: A Survey and New Perspectives》及相关文献
        前两个月读了2018年发表在ACM Computing Snrveys上的一篇关于基于深度学习的原创 2018-12-12 22:32:13 · 1187 阅读 · 0 评论