循环神经网络+注意力机制概述

        总结了最近学的循环神经网络和注意力机制,最近很火的东西。基础知识部分很大程度上参考了邱锡鹏老师的《神经网络与深度学习》这本书。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
参考文献:
邱锡鹏 《神经网络与深度学习》
周志华 《机器学习》
QQ:3408649893

### 带有注意力机制的卷积神经网络(CNN)介绍 带有注意力机制的卷积神经网络是一种融合了两种强大技术的方法,即卷积神经网络(CNN)和注意力机制。这种组合不仅增强了模型处理复杂模式的能力,还使得模型能够聚焦于输入数据的关键部分。 #### 卷积神经网络概述 卷积神经网络是一类专门设计用于处理具有网格结构的数据集(如图像、视频等)的深度学习架构。通过多层卷积操作提取特征图谱中的局部依赖关系,并利用池化层减少维度,在保持重要信息的同时降低计算成本[^1]。 #### 注意力机制的作用 引入注意力机制可以显著提升传统 CNN 的性能表现。具体来说: - **自适应权重分配**:允许网络自动调整不同区域的重要性程度; - **增强解释性**:有助于理解哪些部分对于最终决策最为关键; - **提高鲁棒性和泛化能力**:使模型更加稳定并能更好地应对未见过的情况。 在实践中,通常会在标准 CNN 架构之后加入一个或多个注意模块来实现上述功能改进[^2]。 #### 实现方式 一种常见的做法是在双向长短时记忆循环神经网络 (BiLSTM) 和全连接层之间嵌入一个多头自我关注单元 Multi-head Self Attention Unit 来构建 CNN-BiLSTM-Attention 分类算法框架。这种方式可以让系统既具备捕捉序列间长期依赖性的优势又不失对空间位置敏感度的关注。 ```python import tensorflow as tf from tensorflow.keras.layers import Conv2D, MaxPooling2D, LSTM, Bidirectional, Dense, Dropout, Concatenate from attention_layer import AttentionLayer # 自定义或第三方库提供的注意力层 def create_cnn_bilstm_attention_model(input_shape=(None, None), num_classes=2): inputs = tf.keras.Input(shape=input_shape) cnn_features = Conv2D(64, kernel_size=(3, 3), activation='relu')(inputs) pooled_output = MaxPooling2D(pool_size=(2, 2))(cnn_features) reshaped_output = tf.reshape(pooled_output, [-1, pooled_output.shape[1]*pooled_output.shape[2], pooled_output.shape[-1]]) bilstm_out = Bidirectional(LSTM(units=128, return_sequences=True))(reshaped_output) attended_sequence = AttentionLayer()(bilstm_out) flattened = Flatten()(attended_sequence) dense_1 = Dense(128, activation="relu")(flattened) dropout_1 = Dropout(rate=0.5)(dense_1) output = Dense(num_classes, activation='softmax')(dropout_1) model = tf.keras.Model(inputs=inputs, outputs=output) return model ``` 此代码片段展示了如何创建一个简单的 CNN-BiLSTM-Attention 结合体。请注意 `AttentionLayer` 需要根据实际情况自行定义或者选用合适的开源实现。 ### 应用场景举例 这类混合型架构广泛应用于各种领域内的任务中,比如自然语言处理里的机器翻译、问答系统;计算机视觉方面则可用于目标检测、语义分割以及像蜜蜂与蚂蚁这样的细粒度物体识别等问题上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值