自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 资源 (1)

原创 经典的冷启动推荐算法 / Cold-start Recommendation Baselines

持续更新...

2020-09-25 11:14:24 41

原创 常用的冷启动推荐数据集 / Cold-Start Recommendation Dataset

持续更新...

2020-09-25 11:10:05 27

原创 冷启动推荐的一般性建模流程

冷启动推荐旨在解决当系统中出现新用户或新产品时如何进行推荐的问题,相比于热启动用户或产品,冷启动用户或产品缺少用户-产品交互数据,因此用传统的热启动推荐方法往往不能解决这类问题。当前的冷启动推荐建模的主要思路是:通过学习映射函数将用户或产品的辅助信息表示转换为协同过滤表示。冷启动算法建模的示意图如下:注:图片取自Recommendation for New Users and New Items via Randomized Training and Mixture-of-Experts Trans

2020-09-23 15:14:01 44

原创 论文阅读笔记:A Closer Look at Few-shot Classification

论文:A Closer Look at Few-shot Classification / 近距离观察小样本分类问题作者:Wei-Yu Chen,Y en-Cheng Liu & Zsolt Kira,Yu-Chiang Frank Wang,Jia-Bin Huang发表刊物:ICLR发表年度:2019下载地址:https://arxiv.org/pdf/1904.04232.pdfABSTRACT小样本分类旨在通过有限标记样例学习一个分类器来识别未知类,虽然近些年取得了一

2020-09-22 14:57:47 66

原创 python使用t检验和F检验验证模型好坏

要在某个指标上对比两个模型的好坏,我们可以直接进行比较,同时为了使比较结果更具说服力,我们可以使用统计检验的方法,即将两个模型分别跑k次,使用t检验比较这两组k个样本的均值、使用F检验比较这两组k个样本的方差,均值越大、方差越小说明在当前指标上该模型更好更稳定(这里说的指标是正向指标)。那么下面我们以具体代码来进行说明。from scipy.stats import ttest_rel, fimport numpy as npx = [44.2, 36.1, 46.5, 40.7, 61.6,

2020-09-06 17:24:21 140

原创 Python检验样本是否服从正态分布

在进行t检验、F检验之前,我们往往要求样本大致服从正态分布,下面介绍两种检验样本是否服从正态分布的方法。1 可视化我们可以通过将样本可视化,看一下样本的概率密度是否是正态分布来初步判断样本是否服从正态分布。代码如下:import numpy as npimport pandas as pdimport matplotlib.pyplot as plt# 使用pandas和numpy生成一组仿真数据s = pd.DataFrame(np.random.randn(500),colu

2020-09-06 16:41:10 576

用户画像及其在推荐系统中的应用.pdf

整理的用户画像的相关知识及其在推荐系统中的应用,包括用户画像的基本概念、用户画像的维度、如何构建用户画像以及用户画像在推荐系统中的应用。下载者需要对推荐系统和机器学习有所了解。

2019-12-31

空空如也

空空如也
提示
确定要删除当前文章?
取消 删除